• Spectroscopy and Spectral Analysis
  • Vol. 33, Issue 4, 865 (2013)
WANG Jian-feng1、2、*, LIU Hong-lin1、2, ZHANG Shu-qin1, YU Xiang-dong1、2, SUN Zhong-zhou2, JIN Shang-zhong1、2, and ZHANG Zai-xuan1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3964/j.issn.1000-0593(2013)04-0865-07 Cite this Article
    WANG Jian-feng, LIU Hong-lin, ZHANG Shu-qin, YU Xiang-dong, SUN Zhong-zhou, JIN Shang-zhong, ZHANG Zai-xuan. New Type Distributed Optical Fiber Temperature Sensor (DTS) Based on Raman Scattering and Its’ Application[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 865 Copy Citation Text show less

    Abstract

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 ℃. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.
    WANG Jian-feng, LIU Hong-lin, ZHANG Shu-qin, YU Xiang-dong, SUN Zhong-zhou, JIN Shang-zhong, ZHANG Zai-xuan. New Type Distributed Optical Fiber Temperature Sensor (DTS) Based on Raman Scattering and Its’ Application[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 865
    Download Citation