• Opto-Electronic Engineering
  • Vol. 47, Issue 3, 190671 (2020)
Wang Yuhao1,*, Cao Fan1, Deng Zhenyu1, Liu Xiaodong2..., Luo Yusang1, Ma Shuai3 and Yan Qiurong1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190671 Cite this Article
    Wang Yuhao, Cao Fan, Deng Zhenyu, Liu Xiaodong, Luo Yusang, Ma Shuai, Yan Qiurong. LED nonlinearity compensation and bandwidth expansion techniques in visible light communication[J]. Opto-Electronic Engineering, 2020, 47(3): 190671 Copy Citation Text show less
    References

    [1] Shiu Y S, Chang S Y, Wu H C, et al. Physical layer security in wireless networks: a tutorial[J]. IEEE Wireless Communications, 2011, 18(2): 66-74.

    [2] Liu J, Sando J, Li W, et al. Long distance optical Wireless network employing multiple access scheme[C]//Proceedings of 2007 IEEE Global Telecommunications Conference, Washington, DC, USA, 2007: 2258-2262.

    [3] Green R J, Joshi H, Higgins M D, et al. Recent developments in indoor optical wireless systems[J]. IET Communications, 2008, 2(1): 3-10.

    [4] Singh S, Kakamanshadi G, Gupta S. Visible light communication an emerging wireless communication technology[C]// Proceedings of the 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences, Chandigarh, 2015: 1-3.

    [5] Kottke C, Habel K, Grobe L, et al. Single-channel wireless transmission at 806 Mbit/s using a white light LED and a PIN based receiver[C]//Proceedings of the 2012 14th International Conference on Transparent Optical Networks, Coventry, UK, 2012: 1-4.

    [6] Zhu X, Wang F M, Shi M, et al. 10.72Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization[C]// Proceedings of Optical Fiber Communication Conference 2018, San Diego, 2018: 11-15.

    [7] Pathak P H, Feng X T, Hu P F, et al. Visible light communication, networking, and sensing: a survey, potential and challenges[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2047-2077.

    [8] Dimitrov S, Haas H. Information rate of OFDM-based optical wireless communication systems with nonlinear distortion[J]. Journal of Lightwave Technology, 2013, 31(6): 918-929.

    [9] Zhao S, Cai S Z, Kang K, et al. Optimal transmission power in a nonlinear VLC system[C]//Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, Orlando, 2015: 1180-1184.

    [10] Wang C, Zhou Y J, Chi N. Research of LED’s nonlinear distortion compensation algorithm in visible light communications[J]. China Light & Lighting, 2017(7): 9-15, 26.

    [11] Elgala H, Mesleh R, Haas H. Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs[J]. International Journal of Ultra Wideband Communications and Systems (IJUWBCS), 2009, 1(2): 143-150.

    [12] Ying K, Yu Z H, Baxley R J, et al. Nonlinear distortion mitigation in visible light communications[J]. IEEE Wireless Communications, 2015, 22(2): 36-45.

    [13] Chi N, Zhou Y J, Zhao J Q, et al. High speed visible light communication based on hardware preequalization circuit[J]. Science & Technology Review, 2016, 34(16): 144-149.

    [14] Chi N. Key Devices and Applications of LED Visible Light Communication[M]. Beijing: Post & Telecom Press, 2015: 8.

    [15] Steigerwald D A, Bhat J C, Collins D, et al. Illumination with solid state lighting technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2): 310-320.

    [16] Karunatilaka D, Zafar F, Kalavally V, et al. LED based indoor visible light communications: state of the art[J]. IEEE Communications Surveys & Tutorials, 2015, 17(3): 1649-1678.

    [17] Neokosmidis I, Kamalakis T, Walewski J W, et al. Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach[J]. Journal of Lightwave Technology, 2009, 27(22): 4970-4978.

    [18] Tsonev D, Sinanovic S, Haas H. Complete modeling of nonlinear distortion in OFDM-based optical wireless communication[J]. Journal of Lightwave Technology, 2013, 31(18): 3064-3076.

    [19] Ghassemlooy Z, Alves L N, Zvanovec S, et al. Visible Light Communications: Theory and Applications[M]. Boca Raton: CRC Press, 2017.

    [20] Jiang F Y, Zhang J L, Xu L Q, et al. Efficient InGaN based yellow-light-emitting diodes[J]. Photonics Research, 2019, 7(2): 144-148.

    [21] Liu J L, Mo C L, Zhang J L, et al. Progress of five primary colours LED lighting source technology[J]. China Illuminating Engineering Journal, 2017, 28(1): 1-4, 29.

    [22] Kamalakis T, Walewski J W, Ntogari G, et al. Empirical volterra series modeling of commercial light-emitting diodes[J]. Journal of Lightwave Technology, 2011, 29(14): 2146-2155.

    [23] Asatani K, Kimura T. Linearization of LED nonlinearity by predistortions[J]. IEEE Transactions on Electron Devices, 1978, 25(2): 207-212.

    [24] Yao S J, Xu H Y, Wang L Y, et al. Research of adaptive predistortion technique for nonlinear LEDs with memory effects[J]. Chinese Journal of Lasers, 2014, 41(11): 1105007.

    [25] Kim J K, Hyun K, Park S K. Adaptive predistorter using NLMS algorithm for nonlinear compensation in visible light communication system[J]. Electronics Letters, 2014, 50(20): 1457-1459.

    [26] Mitra R, Bhatia V. Chebyshev polynomial based adaptive predistorter for nonlinear LED compensation in VLC[J]. IEEE Photonics Technology Letters, 2016, 28(10): 1053-1056.

    [27] Lu X Y, Zhao M M, Qiao L, et al. Non-linear compensation of multi-CAP VLC system employing predistortion base on clustering of machine learning[C]//Proceedings of Optical Fiber Communication Conference 2018, San Diego, 2018: 11.

    [28] Stepniak G, Siuzdak J, Zwierko P. Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE[J]. IEEE Photonics Technology Letters, 2013, 25(16): 1597-1600.

    [29] Qian H, Yao S J, Cai S Z, et al. Adaptive postdistortion for nonlinear LEDs in visible light communications[J]. IEEE Photonics Journal, 2014, 6(4): 7901508.

    [30] Mitra R, Bhatia V. Adaptive sparse dictionary based kernel minimum symbol error rate post-distortion for nonlinear LEDs in visible light communications[J]. IEEE Photonics Journal, 2016, 8(4): 7905413.

    [31] Wang Y Q, Huang X X, Zhang J W, et al. Enhanced performance of visible light communication employing 512-QAM NSCFDE and DDLMS[J]. Optics Express, 2014, 22(13): 15328-15334.

    [32] Xu X D. Nonlinear post distortion for LED in visible light communication[J]. Network and Communication, 2017, 36(22): 78-82, 90.

    [33] Grubor J, Randel S, Langer K D, et al. Broadband information broadcasting using LED based interior lighting[J]. Journal of Lightwave Technology, 2008, 26(24): 3883-3892.

    [34] Le Minh H, O’Brien D, Faulkner G, et al. High-speed visible light communications using multiple resonant equalization[J]. IEEE Photonics Technology Letters, 2008, 20(14): 1243-1245.

    [35] Le Minh H, O’Brien D, Faulkner G, et al. 80 Mbit/s Visible Light Communications using pre-equalized white LED[C]// Proceedings of the 2008 34th European Conference on Optical Communication, Brussels, 2008: 1-2.

    [36] Li H L, Chen X B, Guo J Q, et al. 200 Mb/s visible optical wireless transmission based on NRZ-OOK modulation of phosphorescent white LED and a pre-emphasis circuit[J]. Chinese Optics Letters, 2014, 12(10): 100604.

    [37] Fujimoto N, Yamamoto S. The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques[C]//Proceedings of the 2014 the European Conference on Optical Communication, Cannes, France, 2014: 1-3.

    [38] Yeh C H, Chow C W, Chen H Y, et al. Adaptive 84.44-190 Mbit/s Phosphor LED Wireless Communication utilizing no blue filter at practical transmission distance[J]. Optics Express, 2014, 22(8): 9783-9788.

    [39] Fujimoto N, Mochizuki H. 477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit[C]//Proceedings of 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, 2013: 1-3.

    [40] Li H L, Chen X B, Guo J Q, et al. An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation[J]. IEEE Wireless Communications, 2015, 22(2): 68-73.

    [41] Huang X X, Shi J Y, Li J H, et al. 750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit[C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition, Los Angeles, 2015.

    [42] Huang X X, Wang Z X, Shi J Y, et al. 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver[J]. Optics Express, 2015, 23(17): 22034-22042.

    [43] Zhou Y J, Liang S Y, Chen S Y, et al. 2.08 Gbit/s visible light communication utilizing power exponential pre-equalization[C]//Proceedings of the 2016 25th Wireless and Optical Communication Conference, Chengdu, China, 2016.

    [44] Grubor J, Lee S C J, Langer K D, et al. Wireless high-speed data transmission with phosphorescent white-light LEDs[C]// Proceedings of the 33rd European Conference and Exhibition of Optical Communication Post Deadline Papers, Berlin, Germany, 2007: 1-2.

    [45] Le Minh H, O'Brien D, Faulkner G, et al. 100-Mb/s NRZ visible light communications using a postequalized white LED[J]. IEEE Photonics Technology Letters, 2009, 21(15): 1063-1065.

    [46] Tokgoz S C, Anous N, Yarkan S, et al. Performance improvement of white LED based VLC systems using blue and flattening filters[C]//Proceedings of 2019 International Conference on Advanced Communication Technologies and Networking, Rabat, Morocco, 2019: 1-6.

    [47] Li H L, Chen X B, Huang B J, et al. High bandwidth visible light communications based on a post-equalization circuit[J]. IEEE Photonics Technology Letters, 2014, 26(2): 119-122.

    [48] Ding D Q, Ke X Z, Li J X. Design and simulation on the layout of lighting for VLC system[J]. Opto-Electronic Engineering, 2007, 34(1): 131-134.

    [49] Komine T, Lee J H, Haruyama S, et al. Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment[J]. IEEE Transactions on Wireless Communications, 2009, 8(6): 2892-2900.

    [50] Li G Q, Hu F C, Zhao Y H, et al. Enhanced performance of a phosphorescent white LED CAP 64QAM VLC system utilizing deep neural network (DNN) post equalization[C]//Proceedings of 2019 IEEE/CIC International Conference on Communications in China, Changchun, China, 2019.

    CLP Journals

    [1] ZHU Man-jing, WANG Yu-hao, LIU Xiao-dong. Research on Relay Technology of Visible Light Communication[J]. Study On Optical Communications, 2021, 47(3): 64

    Wang Yuhao, Cao Fan, Deng Zhenyu, Liu Xiaodong, Luo Yusang, Ma Shuai, Yan Qiurong. LED nonlinearity compensation and bandwidth expansion techniques in visible light communication[J]. Opto-Electronic Engineering, 2020, 47(3): 190671
    Download Citation