• Opto-Electronic Engineering
  • Vol. 47, Issue 3, 190671 (2020)
Wang Yuhao1、*, Cao Fan1, Deng Zhenyu1, Liu Xiaodong2, Luo Yusang1, Ma Shuai3, and Yan Qiurong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190671 Cite this Article
    Wang Yuhao, Cao Fan, Deng Zhenyu, Liu Xiaodong, Luo Yusang, Ma Shuai, Yan Qiurong. LED nonlinearity compensation and bandwidth expansion techniques in visible light communication[J]. Opto-Electronic Engineering, 2020, 47(3): 190671 Copy Citation Text show less
    References

    [1] Shiu Y S, Chang S Y, Wu H C, et al. Physical layer security in wireless networks: a tutorial[J]. IEEE Wireless Communications, 2011, 18(2): 66-74.

    [2] Liu J, Sando J, Li W, et al. Long distance optical Wireless network employing multiple access scheme[C]//Proceedings of 2007 IEEE Global Telecommunications Conference, Washington, DC, USA, 2007: 2258-2262.

    [3] Green R J, Joshi H, Higgins M D, et al. Recent developments in indoor optical wireless systems[J]. IET Communications, 2008, 2(1): 3-10.

    [4] Singh S, Kakamanshadi G, Gupta S. Visible light communication an emerging wireless communication technology[C]// Proceedings of the 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences, Chandigarh, 2015: 1-3.

    [5] Kottke C, Habel K, Grobe L, et al. Single-channel wireless transmission at 806 Mbit/s using a white light LED and a PIN based receiver[C]//Proceedings of the 2012 14th International Conference on Transparent Optical Networks, Coventry, UK, 2012: 1-4.

    [6] Zhu X, Wang F M, Shi M, et al. 10.72Gb/s visible light communication system based on single packaged RGBYC LED utilizing QAM-DMT modulation with hardware pre-equalization[C]// Proceedings of Optical Fiber Communication Conference 2018, San Diego, 2018: 11-15.

    [7] Pathak P H, Feng X T, Hu P F, et al. Visible light communication, networking, and sensing: a survey, potential and challenges[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2047-2077.

    [8] Dimitrov S, Haas H. Information rate of OFDM-based optical wireless communication systems with nonlinear distortion[J]. Journal of Lightwave Technology, 2013, 31(6): 918-929.

    [9] Zhao S, Cai S Z, Kang K, et al. Optimal transmission power in a nonlinear VLC system[C]//Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, Orlando, 2015: 1180-1184.

    [10] Wang C, Zhou Y J, Chi N. Research of LED’s nonlinear distortion compensation algorithm in visible light communications[J]. China Light & Lighting, 2017(7): 9-15, 26.

    [11] Elgala H, Mesleh R, Haas H. Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs[J]. International Journal of Ultra Wideband Communications and Systems (IJUWBCS), 2009, 1(2): 143-150.

    [12] Ying K, Yu Z H, Baxley R J, et al. Nonlinear distortion mitigation in visible light communications[J]. IEEE Wireless Communications, 2015, 22(2): 36-45.

    [13] Chi N, Zhou Y J, Zhao J Q, et al. High speed visible light communication based on hardware preequalization circuit[J]. Science & Technology Review, 2016, 34(16): 144-149.

    [14] Chi N. Key Devices and Applications of LED Visible Light Communication[M]. Beijing: Post & Telecom Press, 2015: 8.

    [15] Steigerwald D A, Bhat J C, Collins D, et al. Illumination with solid state lighting technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2): 310-320.

    [16] Karunatilaka D, Zafar F, Kalavally V, et al. LED based indoor visible light communications: state of the art[J]. IEEE Communications Surveys & Tutorials, 2015, 17(3): 1649-1678.

    [17] Neokosmidis I, Kamalakis T, Walewski J W, et al. Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach[J]. Journal of Lightwave Technology, 2009, 27(22): 4970-4978.

    [18] Tsonev D, Sinanovic S, Haas H. Complete modeling of nonlinear distortion in OFDM-based optical wireless communication[J]. Journal of Lightwave Technology, 2013, 31(18): 3064-3076.

    [19] Ghassemlooy Z, Alves L N, Zvanovec S, et al. Visible Light Communications: Theory and Applications[M]. Boca Raton: CRC Press, 2017.

    [20] Jiang F Y, Zhang J L, Xu L Q, et al. Efficient InGaN based yellow-light-emitting diodes[J]. Photonics Research, 2019, 7(2): 144-148.

    [21] Liu J L, Mo C L, Zhang J L, et al. Progress of five primary colours LED lighting source technology[J]. China Illuminating Engineering Journal, 2017, 28(1): 1-4, 29.

    [22] Kamalakis T, Walewski J W, Ntogari G, et al. Empirical volterra series modeling of commercial light-emitting diodes[J]. Journal of Lightwave Technology, 2011, 29(14): 2146-2155.

    [23] Asatani K, Kimura T. Linearization of LED nonlinearity by predistortions[J]. IEEE Transactions on Electron Devices, 1978, 25(2): 207-212.

    [24] Yao S J, Xu H Y, Wang L Y, et al. Research of adaptive predistortion technique for nonlinear LEDs with memory effects[J]. Chinese Journal of Lasers, 2014, 41(11): 1105007.

    [25] Kim J K, Hyun K, Park S K. Adaptive predistorter using NLMS algorithm for nonlinear compensation in visible light communication system[J]. Electronics Letters, 2014, 50(20): 1457-1459.

    [26] Mitra R, Bhatia V. Chebyshev polynomial based adaptive predistorter for nonlinear LED compensation in VLC[J]. IEEE Photonics Technology Letters, 2016, 28(10): 1053-1056.

    [27] Lu X Y, Zhao M M, Qiao L, et al. Non-linear compensation of multi-CAP VLC system employing predistortion base on clustering of machine learning[C]//Proceedings of Optical Fiber Communication Conference 2018, San Diego, 2018: 11.

    [28] Stepniak G, Siuzdak J, Zwierko P. Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE[J]. IEEE Photonics Technology Letters, 2013, 25(16): 1597-1600.

    [29] Qian H, Yao S J, Cai S Z, et al. Adaptive postdistortion for nonlinear LEDs in visible light communications[J]. IEEE Photonics Journal, 2014, 6(4): 7901508.

    [30] Mitra R, Bhatia V. Adaptive sparse dictionary based kernel minimum symbol error rate post-distortion for nonlinear LEDs in visible light communications[J]. IEEE Photonics Journal, 2016, 8(4): 7905413.

    [31] Wang Y Q, Huang X X, Zhang J W, et al. Enhanced performance of visible light communication employing 512-QAM NSCFDE and DDLMS[J]. Optics Express, 2014, 22(13): 15328-15334.

    [32] Xu X D. Nonlinear post distortion for LED in visible light communication[J]. Network and Communication, 2017, 36(22): 78-82, 90.

    [33] Grubor J, Randel S, Langer K D, et al. Broadband information broadcasting using LED based interior lighting[J]. Journal of Lightwave Technology, 2008, 26(24): 3883-3892.

    [34] Le Minh H, O’Brien D, Faulkner G, et al. High-speed visible light communications using multiple resonant equalization[J]. IEEE Photonics Technology Letters, 2008, 20(14): 1243-1245.

    [35] Le Minh H, O’Brien D, Faulkner G, et al. 80 Mbit/s Visible Light Communications using pre-equalized white LED[C]// Proceedings of the 2008 34th European Conference on Optical Communication, Brussels, 2008: 1-2.

    [36] Li H L, Chen X B, Guo J Q, et al. 200 Mb/s visible optical wireless transmission based on NRZ-OOK modulation of phosphorescent white LED and a pre-emphasis circuit[J]. Chinese Optics Letters, 2014, 12(10): 100604.

    [37] Fujimoto N, Yamamoto S. The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques[C]//Proceedings of the 2014 the European Conference on Optical Communication, Cannes, France, 2014: 1-3.

    [38] Yeh C H, Chow C W, Chen H Y, et al. Adaptive 84.44-190 Mbit/s Phosphor LED Wireless Communication utilizing no blue filter at practical transmission distance[J]. Optics Express, 2014, 22(8): 9783-9788.

    [39] Fujimoto N, Mochizuki H. 477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit[C]//Proceedings of 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, 2013: 1-3.

    [40] Li H L, Chen X B, Guo J Q, et al. An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation[J]. IEEE Wireless Communications, 2015, 22(2): 68-73.

    [41] Huang X X, Shi J Y, Li J H, et al. 750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit[C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition, Los Angeles, 2015.

    [42] Huang X X, Wang Z X, Shi J Y, et al. 1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver[J]. Optics Express, 2015, 23(17): 22034-22042.

    [43] Zhou Y J, Liang S Y, Chen S Y, et al. 2.08 Gbit/s visible light communication utilizing power exponential pre-equalization[C]//Proceedings of the 2016 25th Wireless and Optical Communication Conference, Chengdu, China, 2016.

    [44] Grubor J, Lee S C J, Langer K D, et al. Wireless high-speed data transmission with phosphorescent white-light LEDs[C]// Proceedings of the 33rd European Conference and Exhibition of Optical Communication Post Deadline Papers, Berlin, Germany, 2007: 1-2.

    [45] Le Minh H, O'Brien D, Faulkner G, et al. 100-Mb/s NRZ visible light communications using a postequalized white LED[J]. IEEE Photonics Technology Letters, 2009, 21(15): 1063-1065.

    [46] Tokgoz S C, Anous N, Yarkan S, et al. Performance improvement of white LED based VLC systems using blue and flattening filters[C]//Proceedings of 2019 International Conference on Advanced Communication Technologies and Networking, Rabat, Morocco, 2019: 1-6.

    [47] Li H L, Chen X B, Huang B J, et al. High bandwidth visible light communications based on a post-equalization circuit[J]. IEEE Photonics Technology Letters, 2014, 26(2): 119-122.

    [48] Ding D Q, Ke X Z, Li J X. Design and simulation on the layout of lighting for VLC system[J]. Opto-Electronic Engineering, 2007, 34(1): 131-134.

    [49] Komine T, Lee J H, Haruyama S, et al. Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment[J]. IEEE Transactions on Wireless Communications, 2009, 8(6): 2892-2900.

    [50] Li G Q, Hu F C, Zhao Y H, et al. Enhanced performance of a phosphorescent white LED CAP 64QAM VLC system utilizing deep neural network (DNN) post equalization[C]//Proceedings of 2019 IEEE/CIC International Conference on Communications in China, Changchun, China, 2019.

    Wang Yuhao, Cao Fan, Deng Zhenyu, Liu Xiaodong, Luo Yusang, Ma Shuai, Yan Qiurong. LED nonlinearity compensation and bandwidth expansion techniques in visible light communication[J]. Opto-Electronic Engineering, 2020, 47(3): 190671
    Download Citation