• Journal of Infrared and Millimeter Waves
  • Vol. 36, Issue 1, 81 (2017)
GUO Cheng1、2, LI Jin1、*, SHANG Xiao-Bang2, Michael J. Lancaster2, XU Jun1, HE Xi1、2, GAO Yang2, and ZHAI Xin-Yu3
Author Affiliations
  • 1[in Chinese]
  • 2University of Birmingham, Department of Electronic, Electrical and Systems Engineering, Edgbaston, Birmingham, B15 2TT, U.K.
  • 3[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2017.01.016 Cite this Article
    GUO Cheng, LI Jin, SHANG Xiao-Bang, Michael J. Lancaster, XU Jun, HE Xi, GAO Yang, ZHAI Xin-Yu. Novel microwave/millimeter-wave passive waveguide devices based on 3-D printing techniques[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 81 Copy Citation Text show less
    References

    [1] STIL I, FONTANA A L, LEFRANC B, et al. Loss of WR10 waveguide across 70-116 GHz: Proceedings of International Symposium on Space Terahertz Technology, 2012[C]. Tokyo, Japan: International Symposium on Space Terahertz Technology, 2012: 151-153.

    [2] LEONG K M K H, HENNIG K, ZHANG Chunbo, et al. WR1.5 silicon micromachined waveguide components and active circuit integration methodology[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(4): 998-1005.

    [3] RECK T J, JUNG-KUBIAK C, GILL J, et al. Measurement of silicon micromachined waveguide components at 500-750 GHz[J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(1), 33-38.

    [4] MURAD N A, LANCASTER M J, GARDNER P, et al. Micromachined H-plane horn antenna manufactured using thick SU-8 photoresist[J]. Electronics Letters, 2010, 46(11): 743-745.

    [5] SHANG Xiaobang, KE Maolong, WANG Yi, et al. Micromachined WR-3 waveguide filter with embedded bends[J]. Electronics Letters, 2011, 47(9), 545-547.

    [6] SHANG Xiaobang, KE Maolong, WANG Yi, et al. Micromachined W-band waveguide and filter with two embedded H-plane bends[J]. IET Microwave, Antennas & Propagation, 2011, 5(3), 334-339.

    [7] SHANG Xiaobang, KE Maolong, WANG Yi, et al. WR-3 band waveguides and filters fabricated using SU8 photoresist micromachining technology[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(6), 629-637.

    [8] SHANG Xiaobang, TIAN Yingtao, LANCASTER M J, et al. A SU8 micromachined WR-1.5 band waveguide filter[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(6), 300-302.

    [9] SMITH C H III, SKLAVONUOS A, BARKER N S. SU-8 micromachining of millimeter and submillimeter waveguide circuits: IEEE MTT-S International Microwave Symposium Digest, 2009[C]. Boston, MA: IEEE, 2009: 961-964.

    [10] GIBSON I, ROSEN D W, STUCKER B. Additive manufacturing technologies[M]. New York: Springer, 2010.

    [11] TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al. Continuous liquid interface production of 3-D objects[J]. Science, 2015, 347(6228), 1349-1352.

    [12] SYMES M D, KITSON P J, Yan J, et al. Integrated 3-D-printed reactionware for chemical synthesis and analysis[J]. Nature Chemistry, 2012, 4: 349-354.

    [13] VAIDYA M. Startups tout commercially 3-D-printed tissue for drug screening[J]. Nature Medicine, 2015, 21(2):1.

    [14] KONG Y L, TAMARGO I A, KIM H, et al. 3-D printed quantum dot light-emitting diodes[J]. Nano Letters, 2014, 14(12): 7017-7023.

    [15] DEFFENBAUGH P I, WELLER T M, CHURCH K H. Fabrication and microwave characterization of 3-D printed transmission lines[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(12): 823-825.

    [16] PA P, LARIMORE Z, PARSONS P, et al. Multi-material additive manufacturing of embedded low-profile antennas[J]. Electronics Letters, 2015, 51(20):1561-1562.

    [17] KETTERL T P, VEGA Y, ARNAL N C, et al. A 2.45 GHz phased array antenna unit cell fabricated using 3-D multi-layer direct digital manufacturing[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(12):4382-4394.

    [18] DEFFENBAUGH P I, RUMPF R C, CHURCH K H. Broadband microwave frequency characterization of 3-D printed materials[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(12):2147-2155.

    [19] GONG Xun, LIU Bosui, KATEHI L P B, et al. Layer-by-layer stereolithography (SL) of complex medium: IEEE Antennas and Propagation Society Symposium, 2004[C]. Monterey, CA: IEEE, 2004: 325-328.

    [20] GONG Xun, MARGOMENOS A, LIU Bosui, et al. High-Q evanescent-mode filters using silicon micromachining and polymer stereolithography (SL) processing: IEEE MTT-S International Microwave Symposium Digest, 2004[C]. Fort Worth, TX: IEEE, 2004: 433-436.

    [21] LIU Bosui, GONG Xun, CHAPPELL W J. Applications of layer-by-layer polymer stereolithography for three-dimensional high-frequency components[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(11):2567-2575.

    [22] HUANG Yilei, GONG Xun, HAJELA S, et al. Layer-by-layer stereolithography of three-dimensional antennas: IEEE Antennas and Propagation Society Symposium, 2005[C]. Washington, D.C.: IEEE, 2005: 276-279.

    [23] BUERKLE A, BRAKORA K F, SARABANDI K. Fabrication of a DRA array using ceramic stereolithography[J]. IEEE Antennas and Wireless Propagation Letters, 2006, 5(1), 479-482.

    [24] BRAKORA K F, HALLORAN J, SARABANDI K. Design of 3-D monolithic MMW antennas using ceramic stereolithography[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 790-797.

    [25] BRAKORA K, HALLORAN J, SARABANDI K. Subwavelength periodic lattices for the design of MMW components using ceramic stereolithography: IEEE Antennas and Propagation Society Symposium, 2006[C]. Albuquerque, NM: IEEE, 2006: 4511-4514.

    [26] BRAKORA K F, SARABANDI K. Integration of single-mode photonic crystal clad waveguides with monolithically constructed ceramic subsystems[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 433-436.

    [27] DELHOTE N, BAILLARGEAT D, VERDEYME S, et al. Ceramic layer-by-layer stereolithography for the manufacturing of 3-D millimeter-wave filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(3): 548-554.

    [28] CHARTIER T, DUTERTE C, DELHOTE N, et al.. Fabrication of millimeter wave components via ceramic stereo- and microstereolithography processes[J]. Journal of the American Ceramic Society, 2008, 91(8): 2469-2474.

    [29] NGUYEN N T, DELHOTE N, ETTORRE M, et al. Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(8): 2757-2762.

    [30] SCHULWITZ L, MORTAZAWI A. A compact millimeter-wave horn antenna array fabricated through layer-by-layer stereolithography: IEEE Antennas and Propagation Society Symposium, 2008[C]. San Diego, CA: IEEE, 2008: 1-4.

    [31] TIMBIE P T, GRADE J, VAN DER WEIDE D, et al. Stereolithographed MM-wave corrugated horn antennas: Proceedings of International Conference on Infrared, Millimeter and Terahertz Waves, 2011[C]. Houston, TX: IEEE, 2011: 1-3.

    [32] LE SAGE G P. 3-D printed waveguide slot array antennas[J]. IEEE Access, 2016, 4:1258-1265.

    [33] D'AURIA M, OTTER W J, HAZELL J, et al. 3-D printed metal-pipe rectangular waveguides[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(9):1339-1349.

    [34] VON BIEREN A, DE RIJK E, ANSERMET J-Ph, et al. Monolithic metal-coated plastic components for mm-wave applications: Proceedings of International Conference on Infrared, Millimeter and Terahertz Waves, 2014[C]. Tucson, AZ: IEEE, 2014: 1-2.

    [35] GETERUD E G, BERGMARK P, YANG J. Lightweight waveguide and antenna components using plating on plastics: Proceedings of European Conference on Antennas and Propagation, 2013[C], Gothenburg, Sweden: IEEE, 2013: 1812-1815.

    [36] CHIEH J-C S, DICK B, LOUI S, et al. Development of a Ku-band corrugated conical horn using 3-D print technology[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13:201-204.

    [37] MACOR A, DE RIJK E, ALBERTI S, et al. Note: Three-dimensional stereolithography for millimeter wave and terahertz applications[J]. Review of Scientific Instruments, 2012, 83(046103):1-3.

    [38] GARCIA C R, RUMPF R C, TSANG H H, et al. Effects of extreme surface roughness on 3-D printed horn antenna[J]. Electronics Letters, 2013, 49(12):734-736.

    [39] ZHANG Bing, ZIRATH H. 3-D printed iris bandpass filters for millimetre-wave applications[J]. Electronics Letters, 2015, 51(22): 1791-1793.

    [40] ZHANG Bing, ZIRATH H. A metallic 3-D printed E-band radio front end[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(5):331-333.

    [41] ZHANG Bing, ZIRATH H. Metallic 3-D printed rectangular waveguides for millimeter-wave applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(5):796-804.

    [42] ZHANG Bing, ZHAN Zhaoyao, CAO Yu, et al. Metallic 3-D printed antennas for millimeter- and submillimeter wave applications[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(4):592-600.

    [43] HUANG Guan-Long, ZHOU Shi-Gang, CHIO T-H, et al. 3-D metal-direct-printed wideband and high-efficiency waveguide-fed antenna array: IEEE MTT-S International Microwave Symposium Digest, 2015[C], Phoenix, AZ, IEEE, 2015: 1-4.

    [44] TORNIELLI DI CRESTVOLANT V, IGLESIAS P M, LANCASTER M J. Advanced Butler matrices with integrated bandpass filter functions[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(10):3433-3444.

    [45] LIANG Min, NG W-R, CHANG K, et al. A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(4):1799-1807.

    [46] ARBAOUI Y, LAUR V, MAALOUF A, et al. Full 3-D printed microwave termination: A simple and low-cost solution[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(1):271-278.

    [47] WU Ziran, NG W-R, GEHM M E, et al. Terahertz electromagnetic crystal waveguide fabricated by polymer jetting rapid prototyping[J]. Optics Express, 2011, 19(5):3962-3972.

    [48] PANDEY S, GUPTA B, NAHATA A. Terahertz plasmonic waveguides created via 3-D printing[J]. Optics Express, 2013, 21(21): 24422-24430.

    [49] YI Huan, QU Shi-Wei, NG K-B, et al. 3-D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(2):442-449.

    [50] NAYERI P, LIANG Min, SABORY-GARCI A R A, et al. 3-D printed dielectric reflectarrays: Low-cost high-gain antennas at sub-millimeter waves[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(4):2000-2008.

    [51] KIMIONIS J, ISAKOV M, KOH B S, et al. 3-D-printed origami packaging with inkjet-printed antennas for RF harvesting sensors[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(12):4521-4532.

    [52] MCKERRICHER G, TITTERINGTON D, SHAMIM A. A fully inkjet-printed 3-D honeycomb-inspired patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15:544-547.

    [53] Rogers Corporation. [OL]. (2016) [2016-07-04]. www.rogerscorp.com.

    [54] T-Tech Inc. Conductive Ink, QP-Ink[OL]. (2016) [2016-05-27]. www.t-techtools.com.

    [55] MALLORY G O, HAJDU J B. Electroless plating: Fundamentals and applications[M]. Orlando, FL, USA: Noyes Publications/William Andrew Publishing, 1990.

    [56] SWISSto12 SA. [OL]. (2016) [2016-05-27]. www.swissto12.com.

    [57] GUO Cheng, SHANG Xiaobang, LANCASTER M J, et al. A 3-D printed lightweight X-band waveguide filter based on spherical resonators[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(7):442-444.

    [58] HONG Jia-Sheng, LANCASTER M J. Microstrip filters for RF/microwave applications[M]. New York, USA: Wiley, 2001.

    [59] CAMERON R J, KUDSIA C M, MANSOUR R R. Microwave filters for communication Systems[M]. New York, USA: Wiley, 2007.

    [60] AMARI S. Application of representation theory to dual-mode microwave bandpass filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(2):430-441.

    [61] HU Hai, WU Ke-Li, CAMERON R J. Stepped circular waveguide dual-mode filters for broadband contiguous multiplexers[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1):139-145.

    [62] GUO Cheng, SHANG Xiaobang, LI Jin, et al. A lightweight 3-D printed X-band bandpass filter based on spherical dual-mode resonators[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(8):568-570.

    [63] DSM Desotech Inc., Somos PerFORM[OL]. (2016) [2016-05-27]. www.dsm.com.

    [64] 3-D Systems, Inc. Accura Bluestone[OL]. (2016) [2016-07-04]. www.3dsystems.com.

    [65] HIDNERT P, DICKSON G. Thermal expansion of some industrial copper alloys[J]. Journal of Research of the National Bureau of Standards, 1943, 31:77-82.

    [66] DSM Desotech Inc., Somos 9420[OL]. (2016) [2016-07-04]. www.dsm.com.

    [67] SHANG Xiaobang, LANCASTER M J, GUO Cheng, et al. W-band waveguide filters fabricated by laser micromachining and 3-D printing[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(8):2572-2580.

    [68] 3-D-Parts Ltd.[OL]. (2016) [2016-07-04]. www.3dpartsltd.co.uk.

    GUO Cheng, LI Jin, SHANG Xiao-Bang, Michael J. Lancaster, XU Jun, HE Xi, GAO Yang, ZHAI Xin-Yu. Novel microwave/millimeter-wave passive waveguide devices based on 3-D printing techniques[J]. Journal of Infrared and Millimeter Waves, 2017, 36(1): 81
    Download Citation