• Acta Photonica Sinica
  • Vol. 51, Issue 7, 0751413 (2022)
Yuqiang GUO and Qionghua WANG*
Author Affiliations
  • School of Instrumentation and Optoelectronic Engineering,Beihang University,Beijing 100191,China
  • show less
    DOI: 10.3788/gzxb20225107.0751413 Cite this Article
    Yuqiang GUO, Qionghua WANG. Research Progress on Viewing Angle-related Performance of Liquid Crystal Display(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751413 Copy Citation Text show less
    References

    [1] Z ZHENG, H HU, Z ZHANG et al. Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches. Nature Photonics, 16, 226-234(2022).

    [2] K YIN, E L HSIANG, J ZOU et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light: Science & Applications, 11, 161(2022).

    [3] P CHEN, L L MA, W HU et al. Chirality invertible superstructure mediated active planar optics. Nature Communications, 10, 2518(2019).

    [4] H JIA. Who will win the future of display technologies. National Science Review, 5, 427-431(2018).

    [5] Ziwen YAN, Qun YAN, Dianlun LI et al. Research progress of high integration density μLED display technology. Chinese Journal of Luminescence, 41, 1309-1317(2020).

    [6] Yukun WANG, Zhongming ZHENG, Hao LONG et al. Development and challenges of nitride vertical-cavity surface-emitting lasers. Acta Photonica Sinica, 51, 0251203(2022).

    [7] E L HSIANG, Z YANG, Q YANG et al. Prospects and challenges of mini-LED, OLED, and micro-LED displays. Journal of the Society for Information Display, 29, 446-465(2021).

    [8] S C LEE, T KIM, W S PARK. Liquid crystal displays with variable viewing angles using electric-field-driven liquid crystal lenses as diffusers. Applied Sciences, 10, 667(2020).

    [9] Dezhen ZHONG, Rui LIU, Limei JIANG. Viewing angle controllable liquid crystal display technology with micro structure. Chinese Journal of Liquid Crystals and Displays, 36, 687-693(2021).

    [10] D K YANG, S T WU. Fundamentals of liquid crystal devices(2014).

    [11] I C KHOO. Liquid crystals(2022).

    [14] Z GE, S T WU. Transflective liquid crystal displays(2010).

    [16] M SCHADT, W HELFRICH. Voltage-dependent optical activity of a twisted nematic liquid crystal. Applied Physics Letters, 18, 127-128(1971).

    [17] M F SCHIEKEL, K FAHRENSCHON. Deformation of nematic liquid crystals with vertical orientation in electrical fields. Applied Physics Letters, 19, 391-393(1971).

    [18] K OHMURO, S KATAOKA, T SASAKI et al. Development of super-high image quality vertical alignment mode LCD. SID Symposium Digest of Technical Papers, 28, 845-848(1997).

    [19] A TAKEDA, S KATAOKA, T SASAKI et al. A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology. SID Symposium Digest of Technical Papers, 29, 1077-1080(1998).

    [20] K H KIM, K H LEE, S B PARK et al. Domain divided vertical alignment mode with optimized fringe field effect, 98, 383-386(1998).

    [21] S S KIM. The world's largest (82-in) TFT LCD. SID Symposium Digest of Technical Papers, 36, 1842-1847(2005).

    [22] K MIYACHI, K KOBAYASHI, Y YAMADA et al. The world's first photo alignment LCD technology applied to generation ten factory. SID Symposium Digest of Technical Papers, 41, 579-582(2010).

    [23] R A SOREF. Transverse field effects in nematic liquid crystals. Applied Physics Letters, 22, 165-166(1973).

    [24] M OH-E, K KONDO. Electro-optical characteristics and switching behavior of the in-plane switching mode. Applied Physics Letters, 67, 3895-3897(1995).

    [25] S H LEE, S L LEE, H I KIM. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Applied Physics Letters, 73, 2881-2883(1998).

    [26] H W CHEN, J H LEE, B Y LIN et al. Liquid crystal display and organic light-emitting diode display: Present status and future viewing angles. Light: Science & Applications, 7, 17168(2018).

    [27] Yuqiang GUO, Yubao SUN. Progress in improving the gray scale image quality of LCD under the large viewing angle. Chinese Journal of Liquid Crystals and Displays, 35, 710-724(2020).

    [29] K KÄLÄNTÄR. A directional backlight with narrow angular luminance distribution for widening the viewing angle for an LCD with a front-surface light-scattering film. Journal of the Society for Information Display, 20, 133-1142(2012).

    [30] H CHEN, R ZHU, K KÄLÄNTÄR et al. Quantum dot-enhanced LCDs with wide color gamut and broad angular luminance distribution. SID Symposium Digest of Technical Papers, 47, 1413-1416(2016).

    [31] J P YANG, E L HSIANG, H M P CHEN. Wide viewing angle TN LCD enhanced by printed quantum-dots film. SID Symposium Digest of Technical Papers, 47, 21-24(2016).

    [32] H J KIM, M H SHIN, J Y LEE et al. Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film. Optics Express, 25, 10724-10734(2017).

    [33] Y H KO, P PRABHAKARAN, S CHOI et al. Environmentally friendly quantum‑dot color filters for ultra‑high‑definition liquid crystal displays. Scientific Reports, 10, 15817(2020).

    [34] Y H KO, M JALALAH, S J LEE et al. Super ultra-high resolution liquid-crystal-display using perovskite quantum-dot functional color-filters. Scientific Reports, 8, 12881(2018).

    [35] X ZHU, Z GE, S T WU. Analytical solutions for uniaxial film-compensated wide-view liquid crystal displays. Journal of Display Technology, 2, 2-20(2006).

    [36] Y SAITOH, S KIMURA, K KUSAFUKA et al. Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display. Japanese Journal of Applied Physics, 37, 4822-4828(1998).

    [37] J E ANDERSON, P J BOS. Methods and concerns of compensating in-plane switching liquid crystal displays. Japanese Journal of Applied Physics, 39, 6388-6392(2000).

    [38] F CHU, L L TIAN, H DOU et al. Simulation study of single-cell-gap transflective liquid crystal display with nonuniform potential. Journal Society for Information Display, 28, 148-156(2020).

    [39] J CHEN, K H KIM, J J JYU et al. Optimum film compensation modes for TN and VA LCDs. SID Symposium Digest of Technical Papers, 29, 315-318(1998).

    [40] Q H WANG, F CHU, H DOU et al. A single-cell-gap transflective liquid crystal display with a vertically aligned cell. Liquid Crystals, 46, 1183-1190(2019).

    [41] S W OH, T H YOON. Elimination of light leakage over the entire viewing cone in a homogeneously-aligned liquid crystal cell. Optics Express, 22, 5808-5817(2014).

    [42] W HUANG, J M LI, L M YANG et al. Local dimming algorithm and color gamut calibration for RGB LED backlight LCD display. Optics & Laser Technology, 43, 214-217(2011).

    [43] H CHO, O K KWON. A local dimming algorithm for low power LCD TVs using edge-type LED backlight. IEEE Transactions on Consumer Electronics, 56, 2054-2060(2010).

    [44] G TAN, Y HUANG, M C LI et al. High dynamic range liquid crystal displays with a mini-LED backlight. Optics Express, 26, 16572-16584(2018).

    [45] E GUAN, X CHENG, X ZHANG et al. A novel pixel-level local dimming backlight system for HDR display based on Mini-LED. SID Symposium Digest of Technical Papers, 48, 231-234(2020).

    [46] D HU, J XIAO, H XU et al. AM MiniLED local dimming backlight achieving high dynamic contrast for 8K displays, 52, 290-291(2020).

    [47] Z GAO, H NING, R YAO et al. Mini-LED backlight technology progress for liquid crystal display. Crystals, 12, 313(2022).

    [48] Honglei JI, Naijun CHEN, Daiqing WANG et al. Development and challenges in applieation of Mini-LED backlight technology in TV products. Chinese Journal of Liquid Crystals and Displays, 36, 983-992(2021).

    [49] Y G HUANG, E L HSIANG, M Y DENG et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light: Science & Applications, 9, 105(2020).

    [50] H CHEN, R ZHU, M C LI et al. Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays. Optics Express, 25, 1973-1984(2017).

    [51] Y XI, Y SUN, T SHI et al. A high precision and high contrast algorithm based on dual-cell LCDs. SID Symposium Digest of Technical Papers, 48, 1960-1962(2020).

    [52] H CHEN, G TAN, S T WU. Ambient contrast ratio of LCDs and OLED displays. Optics Express, 25, 33643-33656(2017).

    [53] R SINGHA, K N N UNNI, A SOLANKI et al. Improving the contrast ratio of OLED displays: An analysis of various techniques. Optical Materials, 34, 716-723(2012).

    [54] I NAVARRO-BAENA, A JACOBO-MARTÍN, J J HERNÁNDEZ et al. Single-imprint moth-eye anti-reflective and self-cleaning film with enhanced resistance. Nanoscale, 10, 15496-15504(2018).

    [55] M BURGHOORN, D ROOSEN-MELSEN, J RIET et al. Single layer broadband anti-reflective coatings for plastic substrates produced by full wafer and roll-to-roll step-and-flash nano-imprint lithography. Materials, 6, 3710-3726(2013).

    [56] L SHEN, H DU, J YANG et al. Optimized broad band and quasi-omnidirectional anti-reflection properties with moth-eye structures by low cost replica molding. Applied Surface Science, 325, 100-104(2015).

    [57] R CONTRACTOR, G D’AGUANNO, C MENYUK. Ultra-broadband, polarization-independent, wide-angle absorption in impedance-matched metamaterials with anti-reflective moth-eye surfaces. Optics Express, 26, 24031-24043(2018).

    [58] S S KIM, B H BERKELEY, K H KIM et al. New technologies for advanced LCD-TV performance. Journal of the Society for Information Display, 12, 353-359(2004).

    [59] Y GUO, Y WANG, C ZHANG et al. Low voltage blue-phase liquid crystal display with insulating protrusion sandwiched between dual-layer electrodes. Liquid Crystals, 46, 523-534(2019).

    [60] R LU, Q HONG, Z GE et al. Color shift reduction of a multi-domain IPS-LCD using RGB-LED backlight. Optics Express, 14, 6243-6252(2006).

    [61] S S PARK, I SOHN, E CHO et al. Color shift reduction of liquid crystal displays by controlling light distribution using a micro-lens array film. Journal of Display Technology, 8, 643-649(2012).

    [62] Y GAO, Z LUO, R ZHU et al. A high performance single domain LCD with wide luminance distribution. Journal of Display Technology, 11, 315-324(2015).

    [63] S HWANG, J MIN, MG LEE et al. Novel wide viewing liquid crystal display with improved off-axis image quality in a twisted nematic configuration. Optical Engineering, 48, 114001(2009).

    [64] J YAN, D XU, H C CHENG et al. Turning film for widening the viewing angle of a blue phase liquid crystal display. Applied Optics, 52, 8840-8844(2013).

    [65] L RAO, Z GE, S T WU et al. Zigzag electrodes for suppressing the colour shift of Kerr effect-based liquid crystal displays. Journal of Display Technology, 6, 115-120(2010).

    [66] J H PARK, S W OH, J W HUH et al. Four-domain electrode structure for wide viewing angle in a fringe-field-switching liquid crystal display. Journal of Display Technology, 12, 667-672(2016).

    [67] G S LEE, J C KIM, T H YOON et al. Electrode structure for colour shift reduction in fringe-field switching mode. Optics Express, 15, 5405-5415(2007).

    [68] Y GUO, X LI, Y SUN et al. Low gamma shift blue-phase liquid crystal display with electric field induced multi-domain electrode structure. Liquid Crystals, 47, 54-66(2020).

    [69] R LU, S T WU, Z GE et al. Bending angle effects on the multi-domain in-plane-switching liquid crystal displays. Journal of Display Technology, 1, 207-216(2005).

    [70] Z GE, S T WU, S H LEE. Wide-view and sunlight readable transflective liquid-crystal display for mobile applications. Optics Letters, 33, 2623-2625(2008).

    [71] Y GUO, Y WANG, C ZHANG et al. Blue-phase liquid crystal display with insulating protrusion. Liquid Crystals, 45, 1585-1593(2018).

    [72] Q LIN, J K SONG. Colour shift reduction in vertical alignment liquid crystal cells using the temporal averaging effect of oscillating molecular motion. Liquid Crystals, 39, 333-337(2012).

    [73] Y GUO, X LI, W LI et al. Multi-layer protruded electrodes for reducing the operating voltage and gamma shift of fringe-field switching LCDs. Liquid Crystals, 47, 572-581(2020).

    [74] Y GUO, X LI, Q MU et al. Single electro-optic curve for RGB colours in blue-phase liquid crystal display. Liquid Crystals, 46, 835-845(2019).

    [75] S LAN, X CHEN, H WEI et al. Self-alignment of liquid crystal for multi-domain liquid-crystal display. SID International Symposium Digest of Technical Papers, 49, 453-454(2018).

    [76] Y GUO, X LI, Y YANG et al. Low-gamma shift asymmetrical double-side blue-phase liquid crystal display. Liquid Crystals, 47, 199-210(2020).

    [77] S S KIM. The world’s largest (82-in.) TFT-LCD. SID Symposium Digest of Technical Papers, 36, 1842-1847(2005).

    [78] Y J LIM, J H KIM, J H HER et al. Viewing angle switching of liquid crystal display using fringe-field switching to control off-axis phase retardation. Journal of Physics D: Applied Physics, 43, 085501(2010).

    [79] S B PARK, J K SONG, Y UM et al. Pixel-division technology for high-quality vertical-alignment LCDs. IEEE Electron Device Letters, 31, 987-989(2010).

    [80] B J MUN, T Y JIN, G D LEE et al. Optical approach to improve the gamma curve in a vertical-alignment liquid-crystal cell. Optics Letters, 38, 799-801(2013).

    [81] H J KIM, Y J LIM, G MURALI et al. Reduction of gamma distortion in oblique viewing directions in polymer-stabilized vertical alignment liquid crystal mode. Current Optics and Photonics, 1, 157-162(2017).

    [82] H KIM, K C SHIN, J S KIM et al. New three-gamma-curves-integrated VA LCD design for excellent image quality and enhanced transmittance. Journal of Information Display, 17, 109-115(2016).

    [83] J XIAO, J LIU, Y UM et al. High-transmittance vertical-alignment liquid crystal display with subpixel electrode shielding electric field design. Displays, 68, 102004(2021).

    [84] Y GUO, W LI, X LI et al. Reduced off-axis gamma shift of liquid crystal display by intercepting transmittance method. Journal of Physics D: Applied Physics, 53, 345104(2020).

    [85] H W CHEN, R D ZHU, J HE et al. Going beyond the limit of an LCD’s color gamut. Light: Science & Applications, 6, e17043(2017).

    [86] H KANG, K N LEE, S UNITHRATTIL et al. Narrow-band SrMgAl10O17:Eu2+, Mn2+ green phosphors for wide-color-gamut backlight for LCD displays. ACS Omega, 5, 19516-19524(2020).

    [87] R J XIE, N HIROSAKI, T TAKEDA. Wide color gamut backlight for liquid crystal displays using three-band phosphor-converted white light-emitting diodes. Applied Physics Express, 2, 022401(2009).

    [88] S KOMURA, K OKUDA, K ONODA et al. Seventeen-inch laser backlight in-plane switching liquid crystal display with 8K, 120-Hz driving, and BT.2020 color gamut. Journal of the Society for Information Display, 29, 17-28(2021).

    [89] W DAVID, H CHEN, S T WU. Wide-color-gamut LCDs with vivid color LED technology. SID Symposium Digest of Technical Papers, 47, 992-995(2017).

    [90] Y KANG, Z SONG, X JIANG et al. Quantum dots for wide color gamut displays from photoluminescence to electroluminescence. Nanoscale Research Letters, 12, 154(2017).

    [91] C ZHANG, R NIU, P SHA et al. Inner helical waveplate with angle-insensitive retardation. Optics Express, 29, 28924-28934(2021).

    [92] R NIU, C ZHANG, X LI et al. Wide viewing angle polarization interference filter using double liquid crystal layers with opposite twisted direction. Optics Express, 29, 40310-40322(2021).

    [93] Y SUN, C ZHANG, Y YANG et al. Improving the color gamut of a liquid-crystal display by using a bandpass filter. Current Optics and Photonics, 3, 590-596(2019).

    [94] C ZHANG, R NIU, X LI et al. Twisted nematic liquid crystal polymer-based multi-layer composite polarizer with low azimuthal transmittance variation. Optics Express, 29, 43720-43730(2021).

    [96] Y SUN, Z ZHANG, H MA. Novel mode of liquid crystal display with narrow viewing angle. Japanese Journal of Applied Physics, 41, 3878-3879(2002).

    [97] J W RYU, Y J LIM, Y H JEONG et al. A fringe-field driven hybrid aligned nematic liquid crystal display for narrow viewing angle display. Japanese Journal of Applied Physics, 46, 5951-5953(2007).

    [98] Jianlong LIU, Hongmei MA, Yubao SUN. Blue phase liquid crystal display for narrow viewing angle. Chinese Journal of Liquid Crystals and Displays, 31, 847-852(2016).

    [99] J KIM, D H LEE, J H LEE et al. Optimization of the display viewing angle for automotive application. Journal of Information Display, 23, 87-95(2022).

    [100] B T CHEN, J W PAN. High-efficiency directional backlight design for an automotive display. Applied Optics, 57, 4386-4395(2018).

    [101] Qibin FENG, Huijuan YIN, Xin CHENG et al. Design of optical film with microstructure for viewing angle deflection. Optics and Precision Engineering, 24, 1009-1014(2016).

    [102] Qibin FENG, Dehua LI, Huili XIAO et al. Surface microstructure design of viewing angle deflection film based on extended light source. Optics and Precision Engineering, 29, 1329-1336(2021).

    [103] E JEONG, M H CHIN, Y J LIM et al. Switching of off-axis viewing quality in twisted nematic liquid crystal display by controlling phase retardation of additional liquid crystal layers. Journal of Applied Physics, 104, 033108(2008).

    [104] J S GWAG, Y J LEE, M E KIM et al. Viewing angle control mode using nematic bistability. Optics Express, 16, 2663-2669(2008).

    [105] Y J LIM, J H KIM, J H HER et al. Viewing angle controllable liquid crystal display with high transmittance. Optics Express, 18, 6824-6830(2010).

    [106] Dezhen ZHONG, Xianhe LIU, Limei JIANG. Four-ways viewing angle switchable liquid crystal display technology. Chinese Journal of Liquid Crystals and Displays, 35, 1278-1283(2020).

    [107] M S KIM, Y J LIM, S YOON et al. A controllable viewing angle LCD with an optically isotropic liquid crystal. Journal of Physics D: Applied Physics, 43, 145502(2010).

    [108] C P CHEN, K H KIM, T H YOON et al. A viewing angle switching panel using guest-host liquid crystal. Japanese Journal of Applied Physics, 48, 062401(2009).

    [109] H J CHOI, H LEE, S LIM et al. Dependence of the viewing angle control property of a guest-host liquid crystal cell on the extinction coefficient of the mixture. Applied Optics, 58, 6105-6111(2019).

    [110] E JEONG, Y J LIM, J M RHEE et al. Viewing angle switching of vertical alignment liquid crystal displays by controlling birefringence of homogenously aligned liquid crystal layer. Applied Physics Letters, 90, 051116(2007).

    [111] L RAO, Z GE, S T WU. Viewing angle controllable displays with a blue-phase liquid crystal cell. Optics Express, 18, 3143-3148(2010).

    [112] Z HE, W SHEN, P YU et al. Viewing-angle-switching film based on polymer dispersed liquid crystals for smart anti-peeping liquid crystal display. Liquid Crystals, 49, 59-65(2022).

    [113] H DOU, M CHEN, D LI et al. A controllable viewing angle optical film using micro prisms filled with liquid crystal. Liquid Crystals, 48, 1373-1381(2021).

    [114] Y SUN, Y LI, Y ZHAO et al. A low voltage and continuous viewing angle controllable blue phase liquid crystal display. Journal of Display Technology, 10, 484-487(2014).

    [115] L YUAN, J P CUI, D H LI et al. Viewing angle switchable blue-phase liquid crystal display with low voltage and high transmittance. Journal of the Society for Information Display, 692-696(2013).

    [116] P LI, Y B SUN, Q H WANG. A transflective and viewing angle controllable blue phase liquid crystal display. Liquid Crystals, 40, 1024-1027(2013).

    [117] Y YU, H DOU, H MA et al. Continuous viewing angle controllable patterned vertical alignment liquid crystal display. Liquid Crystals, 41, 1595-1599(2014).

    [118] L W LIU, Q H WANG, J P CUI. A continuous viewing angle controllable liquid crystal display using a blue-phase liquid crystal. Journal of the Society for Information Display, 19, 547-550(2011).

    [119] F CHU, H DOU, L L TIAN et al. A simple transflective liquid crystal display with composite dielectric layer. Liquid Crystals, 46, 1790-1798(2019).

    [120] Mengqing ZHU, Jiangang LU. New viewing angle controllable with FFS-LCD. Chinese Journal of Liquid Crystals and Displays, 33, 182-187(2018).

    Yuqiang GUO, Qionghua WANG. Research Progress on Viewing Angle-related Performance of Liquid Crystal Display(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751413
    Download Citation