• Journal of Inorganic Materials
  • Vol. 38, Issue 7, 778 (2023)
Yunxia SONG1, Yinglei HAN2, Tao YAN2,*, and Min LUO2,*
Author Affiliations
  • 11. School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350108, China
  • 22. Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • show less
    DOI: 10.15541/jim20220667 Cite this Article
    Yunxia SONG, Yinglei HAN, Tao YAN, Min LUO. New Ultraviolet Nonlinear Optical Crystal Rb3Hg2(SO4)3Cl [J]. Journal of Inorganic Materials, 2023, 38(7): 778 Copy Citation Text show less
    References

    [1] N SAVAGE. Ultraviolet lasers. Nature Photonics, 83(2007).

    [2] M LUO, F LIANG, Y SONG et al. M2B10O14F6 (M = Ca, Sr): two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials. Journal of the American Chemical Society, 3884(2018).

    [3] Y SONG, M LUO, N YE. Ultraviolet nonlinear optical crystals in π-conjugated system. Chinese Journal of Structural Chemistry, 105(2020).

    [4] F XIA, F WANG, H HU et al. Application of second harmonic generation in characterization of 2D materials. Journal of Inorganic Materials, 1022(2021).

    [5] Y SONG, F LIANG, H TIAN et al. Molecular engineering design of the first Sr2Be2B2O7-type fluoride carbonates AMgLi2(CO3)2F (A=K, Rb) as deep-ultraviolet birefringent crystal. Acta Chimica Sinica, 105(2022).

    [6] Y LIU, Z LIN, Y LI et al. Nonpolar Na10Cd(NO3)4(SO3S)4 exhibits a large second-harmonic generation. CCS Chemistry, 526(2021).

    [7] H TIAN, C LIN, X ZHAO et al. Design of a new ultraviolet nonlinear optical material KNO3SO3NH3 exhibiting an unexpected strong second harmonic generation response. Materials Today Physics, 100849(2022).

    [8] M MUTALIPU, M ZHANG, H WU et al. Ba3Mg3(BO3)3F3 polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials. Nature Communications, 3089(2018).

    [9] S ZHAO, P GONG, L BAI et al. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nature Communications, 4019(2014).

    [10] G ZOU, C LIN, H JO et al. Pb2BO3Cl: a tailor-made polar lead borate chloride with very strong second harmonic generation. Angewandte Chemie International Edition, 12078(2016).

    [11] H YU, N Z KOOCHER, J RONDINELLI et al. Pb2BO3I: a borate iodide with the largest second-harmonic generation (SHG) response in the KBe2BO3F2 (KBBF) family of nonlinear optical (NLO) materials. Angewandte Chemie International Edition, 6100(2018).

    [12] M LUO, Y SONG, F LIANG et al. Pb2BO3Br: a novel nonlinear optical lead borate bromine with a KBBF-type structure exhibiting strong nonlinear optical response. Inorganic Chemistry Frontiers, 916(2018).

    [13] G H Zou, N Ye, L Huang et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. Journal of the American Chemical Society, 20001(2011).

    [14] T TRAN, J HE, J M RONDINELLI et al. RbMgCO3F: a new beryllium-free deep-ultraviolet nonlinear optical material. Journal of the American Chemical Society, 10504(2015).

    [15] X DONG, L HUANG, Q LIU et al. Perfect balance harmony in Ba2NO3(OH)3: a beryllium-free nitrate as a UV nonlinear optical material. Chemical Communications, 5792(2018).

    [16] P SHAN, T SUN, H CHEN et al. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal. Scientific Reports, 25201(2016).

    [17] P YU, L WU, L ZHOU et al. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br). Journal of the American Chemical Society, 480(2014).

    [18] H YU, J YOUNG, H WU et al. M4Mg4(P2O7)3 (M = K, Rb): Structural engineering of pyrophosphates for nonlinear optical applications. Chemistry of Materials, 29:, 1845(2017).

    [19] J CHEN, L XIONG, L CHEN et al. Ba2NaClP2O7: unprecedented phase matchability induced by symmetry breaking and its unique fresnoite-type structure. Journal of the American Chemical Society, 14082(2018).

    [20] X LU, Z CHEN, X SHI et al. Two pyrophosphates with large birefringences and second-harmonic responses as ultraviolet nonlinear optical materials. Angewandte Chemie International Edition, 17648(2020).

    [21] X DONG, L HUANG, C HU et al. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angewandte Chemie International Edition, 6528(2019).

    [22] F HE, Y DENG, X ZHAO et al. RbSbSO4Cl2: an excellent sulfate nonlinear optical material generated due to the synergistic effect of three asymmetric chromophores. Journal of Materials Chemistry C, 5748(2019).

    [23] F HE, Q WANG, C HU et al. Centrosymmetric (NH4)2SbCl(SO4)2 and non-centrosymmetric (NH4)SbCl2(SO4): synergistic effect of hydrogen-bonding interactions and lone-pair cations on the framework structures and macroscopic centricities. Crystal Growth & Design, 6239(2018).

    [24] R SANKAR, C M RAGHAVAN, M BALAJI et al. Synthesis and growth of triaquaglycinesulfatozinc(II), [Zn(SO4)(C2H5NO2)(H2O)3], a new semiorganic nonlinear optical crystal. Crystal Growth & Design, 348(2007).

    [25] Y SONG, X HAO, C LIN et al. Two tellurium(IV)-based sulfates exhibiting strong second harmonic generation and moderate birefringence as promising ultraviolet nonlinear optical materials. Inorganic Chemistry, 11412(2021).

    [26] Y LI, C YIN, X YANG et al. A nonlinear optical switchable sulfate of ultrawide bandgap. CCS Chemistry., 2298(2020).

    [27] Y LI, J LUO, X JI et al. A short-wave UV nonlinear optical sulfate of high thermal stability. Chinese Journal of Structural Chemistry, 485(2020).

    [28] Y SUN, C LIN, H TIAN et al. A2BeS2O8 (A = NH4, K, Rb, Cs) deep ultraviolet nonlinear optical crystals. Chemistry of Materials, 3781(2022).

    [29] Y HAN, X ZHAO, F XU et al. HgSO4: an excellent mid-infrared sulfate nonlinear optical crystal with wide band gap and strong second harmonic generation response. Journal of Alloys and Compounds, 163727(2022).

    [30] B BENGT. The crystal structures of Tl3(Hg(SO4)2)(HgSO4Cl) and Rb3(Hg(SO4)2)(HgSO4Cl). Acta Chemica Scandinavica, 241(1976).

    [31] S KURTZ, T PERRY. A powder technique for evaluation of nonlinear optical materials. Journal of Applied Physics, 3798(1968).

    [32] W KOHN. Reviews of Modern Physics, 1253(1999).

    [33] V MILMAN, B WINKLER, J A WHITE et al. Electronic structure, properties and phase stability of inorganic crystals: a pseudopotential plane-wave study. International Journal of Quantum Chemistry, 895(2000).

    [34] G YUAN, X MA, H HE et al. Plane strain on band structures and photoelectric properties of 2D monolayer MoSi2N4. Journal of Inorganic Materials, 527(2022).

    [35] M D SEGALL, P J D LINDAN, M J PROBERT et al. First- principles simulation: Ideas, illustrations and the CASTEP code. Journal of Physics-Condensed Matter, 2717(2002).

    [36] J P PERDEW, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 1396(1997).

    [37] Z WEN, B HUANG, T LU et al. Pressure on the structure and thermal properties of PbTiO3: first-principle study. Journal of Inorganic Materials, 787(2022).

    [38] C ADAMO, V BARONE. Toward reliable density functional methods without adjustable parameters: the PBE0 mode. Journal of Chemical Physics, 6158(1999).

    Yunxia SONG, Yinglei HAN, Tao YAN, Min LUO. New Ultraviolet Nonlinear Optical Crystal Rb3Hg2(SO4)3Cl [J]. Journal of Inorganic Materials, 2023, 38(7): 778
    Download Citation