• Chinese Journal of Lasers
  • Vol. 44, Issue 4, 404001 (2017)
Wang Zhaoyang1、2、*, Jin Shangzhong1, Li Ye2、3, Lin Yige2, and Fang Zhanjun2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/cjl201744.0404001 Cite this Article Set citation alerts
    Wang Zhaoyang, Jin Shangzhong, Li Ye, Lin Yige, Fang Zhanjun. Comparison of 1.5 μm Ultra-Stable Laser Systems Based on Fiber Noise Suppression System[J]. Chinese Journal of Lasers, 2017, 44(4): 404001 Copy Citation Text show less
    References

    [1] Hinkley N, Sherman J A, Phillips N B, et al. An atomic clock with 10-18 instability[J]. Science, 2013, 341(6151): 1215-1218.

    [2] Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10-18 level[J]. Nature, 2014, 506(7486): 71-75.

    [3] Huntemann N, Sanner C, Lipphardt B, et al. Single-ion atomic clock with 3×10-18 systematic uncertainty[J]. Physical Review Letters, 2016, 116(6): 063001.

    [4] Nicholson T L, Campbell S L, Hutson R B, et al. Systematic evaluation of an atomic clock at 2×10-18 total uncertainty[J]. Nature Communications, 2015, 6: 6896.

    [5] Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10-16 level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161.

    [6] Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692.

    [7] Hfner S, Falke S, Grebing C, et al. 8×10-17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 2015, 40(9): 2112-2115.

    [8] Jiang Yanyi. Narrow linewidth lasers: Application to optical clocks[D]. Shanghai: East China Normal University, 2012.

    [9] Lin Baike, Cao Shiying, Zhao Yang, et al. A compact iodine-stabilized solid-state laser at 532 nm[J]. Chinese J Lasers, 2014, 41(9): 0902002.

    [10] Fan Xialei, Jin Shangzhong, Zhang Shu, et al. Active suppression of residual amplitude modulation in laser frequency stabilization by multi-frequency mixing[J]. Chinese J Lasers, 2016, 43(4): 0402001.

    [11] Foreman S M, Ludlow A D, de Miranda M H G, et al. Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10-17[J]. Physical Review Letters, 2007, 99(15): 153601.

    [12] Droste S, Ozimek F, Udem T, et al. Optical-frequency transfer over a single-span 1840 km fiber link[J]. Physical Review Letters, 2013, 111(11): 110801.

    [13] Ma L S, Jungner P, Ye J, et al. Delivering the same optical frequency at two places: Accurate cancellation of phase noise introduced by an optical fiber or other time-varying path[J]. Optics Letters, 1994, 19(21): 1777-1779.

    [14] Jiang H, Kéfélian F, Crane S, et al. Long-distance frequency transfer over an urban fiber link using optical phase stabilization[J]. Journal of the Optical Society of America B, 2008, 25(12): 2029-2035.

    [15] Ma C Q, Wu L F, Jiang Y Y, et al. Optical coherence transfer over 50-km spooled fiber with frequency instability of 2×10-17 at 1 s[J]. Chinese Physics B, 2015, 24(8): 084209.

    [16] Xu Yongcun. The influence of optical fiber phase noise on transmission of narrow-linewidth laser and the technique of phase noise cancellation[D]. Shanghai: East China Normal University, 2009: 10-11.

    [17] Li Y, Lin Y G, Zhao Y, et al. Stable narrow linewidth 689 nm diode laser for the second stage cooling and trapping of strontium atoms[J]. Chinese Physics Letters, 2010, 27(7): 074208.

    Wang Zhaoyang, Jin Shangzhong, Li Ye, Lin Yige, Fang Zhanjun. Comparison of 1.5 μm Ultra-Stable Laser Systems Based on Fiber Noise Suppression System[J]. Chinese Journal of Lasers, 2017, 44(4): 404001
    Download Citation