• Laser & Optoelectronics Progress
  • Vol. 60, Issue 18, 1811011 (2023)
Jian Zhou*, Lixing You, Wei Peng, and Zhen Wang
Author Affiliations
  • Laboratory of Superconductor Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • show less
    DOI: 10.3788/LOP222081 Cite this Article Set citation alerts
    Jian Zhou, Lixing You, Wei Peng, Zhen Wang. Research Progress of Terahertz Mixer Technology[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811011 Copy Citation Text show less
    References

    [1] Stephen A M[M]. Nonlinear microwave and RF circuit(2003).

    [2] Yang X F. Study on terahertz subharmonic mixer based on the planar Schottky diode[D](2012).

    [3] Jiang J, He Y, Wang C et al. 0.67 THz sub-harmonic mixer based on Schottky diode and hammer-head filter[J]. Journal of Infrared and Millimeter Waves, 35, 418-424(2016).

    [4] Han P. Study of the THZ subharmonic mixer based on Schottky diode[D](2014).

    [5] Barychev A M. Surconductor-insulator-superconductor THz mixer integrated with a superconducting flux flow oscillator[D](2005).

    [6] Hu Q, Richards P L. Quasiparticle mixers and detectors[M]. Ruggiero S T, Rudman D A. Superconducting devices, 169-196(1990).

    [7] Uchida T, Yazaki H, Yasuoka Y et al. Slot antenna coupled YBa2Cu3O7-δ hot-electron bolometers for millimeter-wave radiation[J]. Physica C: Superconductivity, 357/358/359/360, 1596-1599(2001).

    [8] Uchida T, Yasuoka Y, Suzuki K. IF properties of YBCO hot-electron bolometer mixers for millimeter-wave radiation[J]. Physica C: Superconductivity, 372/373/374/375/376, 387-390(2002).

    [9] Zhang H B, Xiao L, Guo J H et al. The potential and challenges of time-resolved single photon detection based on current-carrying superconducting nanowires[J]. Journal of Physics D Applied Physics, 53, 013001(2019).

    [10] Caputo M, Cirillo C, Attanasio C. NbRe as candidate material for fast single photon detection[J]. Applied Physics Letters, 111, 192601(2017).

    [11] Zhang L, You L X, Peng W et al. Quasiparticle scattering time in NbN superconducting thin films[J]. Physica C: Superconductivity and Its Applications, 579, 1353773(2020).

    [12] Jiang L, Li C, Shiino T et al. Intrinsic mixing behavior of superconducting NbTiN hot electron bolometer mixers based on in situ technique[J]. Physica C: Superconductivity, 485, 120-124(2013).

    [13] Miao W, Zhang W, Zhong J Q et al. Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges[J]. Applied Physics Letters, 104, 052605(2014).

    [14] Zhang W, Miao W, Ren Y et al. Superconducting hot-electron bolometer mixers and their applications[J]. Superconductivity, 2, 100009(2022).

    [15] Skocpol W J, Beasley M R, Tinkham M. Self-heating hotspots in superconducting thin-film microbridges[J]. Journal of Applied Physics, 45, 4054-4066(1974).

    [16] Floet D W, Miedema E, Klapwijk T M et al. Hotspot mixing: a framework for heterodyne mixing in superconducting hot-electron bolometers[J]. Applied Physics Letters, 74, 433-435(1999).

    [17] Champlin K S, Eisenstein G. Cutoff frequency of submillimeter Schottky-barrier diodes[J]. IEEE Transactions on Microwave Theory and Techniques, 26, 31-34(1978).

    [18] Yao C F, Zhou M, Luo Y S et al. Development of terahertz frequency solid state multiply sources and sensors with Schottky barrier diodes[J]. Acta Electronica Sinica, 41, 438-443(2013).

    [19] Zhao X, Jiang C H, Zhang D H et al. Schottky diode-based 450 GHz second harmonic mixer[J]. Journal of Infrared Millimeter Waves, 34, 301-306(2015).

    [20] Cohn M, Degenford J E, Newman B A. Harmonic mixing with an anti-parallel diode pair[J]. S-MTT International Microwave Symposium Digest, 74, 171-172(1974).

    [21] Lee B H, Kim S C, Lee M K et al. Q-band high conversion gain active sub-harmonic mixer[J]. Current Applied Physics, 4, 69-73(2004).

    [22] Marsh S, Alderman B, Matheson D et al. Design of low-cost 183 GHz subharmonic mixers for commercial applications[J]. IET Circuits, 1, 1-6(2007).

    [23] Wilkinson P, Henry M, Wang H et al. The design of a 664 GHz Subharmonic Mixer[C]. https://xueshu.baidu.com/usercenter/paper/show?paperid=330884c7f3000307ce5e51c1575cf922&site=xueshu_se

    [24] Thomas B, Siles J, Schlecht E et al. First results of a 1.2 THz MMIC sub-harmonic mixer based GaAs Schottky diodes for planetary atmospheric remote sensing[C]. http://industry.wanfangdata.com.cn/yj/Detail/NSTLHY?id=NSTLHY_NSTL_HYCC0213876695

    [25] Bulcha B T, Kurtz D S, Groppi C et al. THz Schottky diode harmonic mixers for QCL phase-locking[C](2013).

    [26] Fujiwara N, Jiang M J, Takaki T et al. Super-telephoto drone tracking using HFR-video-based vibration source localization[C], 2239-2244(2019).

    [27] Farran . Harmonic Mixers (WHMB)[EB/OL]. https://farran.com/farran-products/harmonic-mixers-whmb

    [28] Xu Z B, Qian C, Dou W B et al. Design of a W-band sub-harmonic mixer by employing microstrip technology[J]. Journal of Infrared and Millimeter Waves, 32, 242-247(2013).

    [29] Zhao S. Design of W-band harmonic mixer[D](2015).

    [30] Hou J H. Research on microwave and millimeter wave mixing technology[D](2019).

    [31] Ji D F. Terahertz key technology and its radiometer application[D](2020).

    [32] Jiang Y Y. Research on millimeter wave harmonic mixer technology[D](2021).

    [33] He T T, Li S F, Mahmud N et al. Research progress on Schottky diode terahertz mixers[J]. Transducer and Microsystem Technologies, 39, 4-6, 10(2020).

    [34] Gao X, Zhang T, Du J et al. Design, modelling and simulation of a monolithic high-Tc superconducting terahertz mixer[J]. Superconductor Science and Technology, 31, 115010(2018).

    [35] Zhang T, Pegrum C, Du J et al. Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer[J]. Superconductor Science and Technology, 30, 015008(2017).

    [36] Zhang Z F, Xu W W, Zhong Y Y et al. The design of superconductor mixer at 500 GHz[J]. Chinese Journal of Low Temperature Physics, 32, 65-68(2010).

    [37] Jackson B D, de Lange G, Zijlstra T et al. Low-noise 0.8-0.96- and 0.96-1.12-THz superconductor-insulator-superconductor mixers for the Herschel space observatory[J]. IEEE Transactions on Microwave Theory and Techniques, 54, 547-558(2006).

    [38] Esaki L. New phenomenon in narrow germanium p-n junctions[J]. Physical Review, 109, 603-604(1958).

    [39] Giaever I. Electron tunneling and superconductivity[J]. Science, 183, 1253-1258(1974).

    [40] Tucker J R. Quantum limited detection in tunnel junction mixers[J]. IEEE Journal of Quantum Electronics, 15, 1234-1258(1979).

    [41] Shen T M, Richards P L, Harris R E et al. Conversion gain in mm-wave quasiparticle heterodyne mixers[J]. Applied Physics Letters, 36, 777-779(1980).

    [42] Taur Y, Claassen J H, Richards P L. Conversion gain in a Josephson effect mixer[J]. Applied Physics Letters, 24, 101-103(1974).

    [43] Uzawa Y, Wang Z, Kawakami A. Quasi-optical submillimeter-wave mixers with NbN/AlN/NbN tunnel junctions[J]. Applied Physics Letters, 69, 2435-2437(1996).

    [44] Westig M P, Jacobs K, Stutzki J et al. Balanced superconductor-insulator-superconductor mixer on a 9 µm silicon membrane[J]. Superconductor Science and Technology, 24, 085012(2011).

    [45] Li J, Takeda M, Wang Z et al. Low-noise 0.5 THz all-NbN superconductor-insulator-superconductor mixer for submillimeter wave astronomy[J]. Applied Physics Letters, 92, 222504(2008).

    [46] Shan W, Ezaki S, Liu J et al. Planar superconductor-insulator-superconductor mixer array receivers for wide field of view astronomical observation[J]. Proceedings of SPIE, 10708, 1070814(2018).

    [47] Shan W L, Ezaki S, Kaneko K et al. Experimental study of a planar-integrated dual-polarization balanced SIS mixer[J]. IEEE Transactions on Terahertz Science and Technology, 9, 549-556(2019).

    [48] Tan B K, Yassin G, Grimes P et al. Preliminary measurement results of a 650 GHz planar circuit balanced SIS mixer[J]. IEEE Transactions on Terahertz Science and Technology, 3, 32-38(2013).

    [49] Miao W, Zhang W, Delorme Y et al. Non-uniform absorption of terahertz radiation in superconducting hot electron bolometer mixers[J]. Physics Procedia, 36, 330-333(2012).

    [50] Nahum M, Richards P L, Mears C A. Design analysis of a novel hot-electron microbolometer[J]. IEEE Transactions on Applied Superconductivity, 3, 2124-2127(1993).

    [51] Zhou K M. Study on characteristics of ultra-sensitive THz superconducting HEB mixer[D](2015).

    [52] Yagoubov P, Gol’Tsman G N, Voronov B et al. The bandwidth of HEB mixers employing ultrathin NbN films on sapphire substrate[EB/OL]. http://www.nrao.edu/meetings/isstt/papers/1996/1996290302.pdf

    [53] Ekström H, Kollberg E, Yagoubov P et al. Gain and noise bandwidth of NbN hot-electron bolometric mixers[J]. Applied Physics Letters, 70, 3296-3298(1997).

    [54] Wang J P, Kang L, Wang Y et al. Design and fabrication of superconducting HEB mixer[J]. Chinese Science Bulletin, 54, 1218-1221(2009).

    [55] Gol’tsman G N, Gershenzon E M. Phonon-cooled hot-electron bolometric mixer: overview of recent results[J]. Applied Superconductivity, 6, 649-655(1999).

    [56] Kawamura J, Blundell R, Tong C Y E et al. Phonon-cooled NbN HEB mixers for submillimeter wavelengths[EB/OL]. https://www.nrao.edu/meetings/isstt/papers/1997/1997023028.pdf

    [57] Kawamura J, Blundell R, Tong C Y E et al. Low noise NbN lattice-cooled superconducting hot-electron bolometric mixers at submillimeter wavelengths[J]. Applied Physics Letters, 70, 1619-1621(1997).

    [58] Kroug M, Yagoubov P, Gol’tsman G et al. NbN quasioptical phonon cooled hot electron bolometric mixers at THz frequencies[C](1997). https://www.researchgate.net/publication/295538199_NbN_quasioptical_phonon_cooled_hot_electron_bolometric_mixers_at_THz_frequencies

    [59] Foley C P, Mitchell E E, Lam S K H et al. Fabrication and characterisation of YBCO single grain boundary step edge junctions[J]. IEEE Transactions on Applied Superconductivity, 9, 4281-4284(1999).

    [60] Bai D, Du J, He Y S. Characterizations of high-temperature superconducting step-edge Josephson junction mixer[J]. IEEE Transactions on Applied Superconductivity, 24, 1-4(2014).

    [61] Pegrum C, Zhang T, Du J et al. Simulation of HTS Josephson mixers[J]. IEEE Transactions on Applied Superconductivity, 26, 1500905(2016).

    [62] Gao X, Du J, Zhang T et al. 0.34- THz high-temperature superconducting Josephson-junction mixer with superior noise and conversion performance[C](2018).

    [63] Gao X, Du J, Zhang T et al. High-Tc superconducting fourth-harmonic mixer using a dual-band terahertz on-chip antenna of high coupling efficiency[J]. IEEE Transactions on Terahertz Science and Technology, 9, 55-62(2019).

    [64] Zhou G D, Shan W L, You L X et al. Harmonic mixing in the millimeter waveband using high Tc intrinsic Josephson junctions[J]. Chinese Journal of Low Temperature Physics, 21, 111-115(1999).

    [65] Cheng B B, Jiang G, Yang C et al. The technology on terahertz FMCW radar for proximity detection[J]. Guidance & Fuze, 34, 24-28(2013).

    [66] Cooper K B, Dengler R J, Chattopadhyay G et al. A high-resolution imaging radar at 580 GHz[J]. IEEE Microwave and Wireless Components Letters, 18, 64-66(2008).

    [67] Wang Y Y, Jiang B Z, Xu D G et al. Continuous terahertz wave biological tissue imaging technology based on focal plane array[J]. Acta Optica Sinica, 41, 0711001(2021).

    [68] Li J, Takeda M, Wang Z et al. Characterization of the mixing performance of all-NbN superconducting tunnel junctions at 0.5 THz[J]. IEEE Transactions on Applied Superconductivity, 19, 417-422(2009).

    [69] Li C G, Wang J, Wu Y et al. Recent progress of superconducting electronics in China[J]. Acta Physica Sinica, 70, 018501(2021).

    [70] Tamaoki S, Sugitani K, Nguyen-Luong Q et al. Magnetic stability of massive star-forming clumps in RCW 106[J]. The Astrophysical Journal Letters, 875, L16(2019).

    [71] Akiyama K, Alberd A, Alef W et al. First Sagittarius A* event horizon telescope results. Ⅱ. EHT and multiwavelength observations, data processing, and calibration[J]. The Astrophysical Journal Letters, 930, L13(2022).

    [72] Zhang Z W, Zhao Y J, Miao Y X et al. Terahertz nondestructive testing imaging technology based on linear frequency modulation mechanism[J]. Acta Optica Sinica, 42, 0411002(2022).

    [73] Yin X Q, Fan S Z, Li Y F et al. Theoretical analysis of terahertz-wave frequency up-conversion detection based on coexisting difference-and sum-frequency generation[J]. Chinese Journal of Lasers, 48, 214001(2021).

    [74] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 10, 371-379(2016).

    [75] Drouin B J, Tang A, Schlecht E et al. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy[J]. The Journal of Chemical Physics, 145, 074201(2016).

    [76] Xing D, Feng Z H, Wang J L et al. THz GaAs Schottky diodes with point support airbridye structure[J]. Semiconductor Technology, 38, 279-282(2013).

    Jian Zhou, Lixing You, Wei Peng, Zhen Wang. Research Progress of Terahertz Mixer Technology[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811011
    Download Citation