• Journal of Innovative Optical Health Sciences
  • Vol. 4, Issue 1, 53 (2011)
MINGHUI CHEN*, ZHIHUA DING, LING WANG, TONG WU, and YUANHAO TAO
Author Affiliations
  • State Key Laboratory of Modern Optical Instrumentation Zhejiang University, Hangzhou Zhejiang 310027, China
  • show less
    DOI: 10.1142/s1793545811001228 Cite this Article
    MINGHUI CHEN, ZHIHUA DING, LING WANG, TONG WU, YUANHAO TAO. A NOVEL SWEPT LASER SOURCE BASED ON COMBINED TUNABLE FILTERS FOR OCT[J]. Journal of Innovative Optical Health Sciences, 2011, 4(1): 53 Copy Citation Text show less
    References

    [1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).

    [2] A. F. Fercher, W. Drexler, C. K. Hitzenberger et al., "Optical coherence tomography — Principles and applications," J. Rep. Prog. Phys. 66(2), 239-303 (2003).

    [3] N. Sudheendran, M. Mohamed, M. G. Ghosn, V. V. Tuchin, K. V. Larin, "Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography," J. Innov. Opt. Health Sci. 3(3), 169-176 (2010).

    [4] B. Liu, M. E. Brezinski, "Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography," J. Biomed. Opt. SPIE 10, 12044007-1-12 (2007).

    [5] M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Exp. 11, 2183-2189 (2003).

    [6] T. Wu, Z. Ding, M. Chen, L. Xu, G. Shi, Y. Zhang, "Development of high-speed swept-source optical coherence tomography system at 1320 nm," J. Innov. Opt. Health Sci. 2(1), 117-122 (2009).

    [7] S. R. Chinn, E. A. Swanson, J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997).

    [8] D. Zhihua, C. Minghui, W. Kai, et al., "High-speed swept source and its applications in optical frequency- domain imaging," J. Chin. J. Lasers 36(10), 2469-2476 (2009).

    [9] R. Huber, M. Wojtkowski, J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Exp. 14(8), 3225-3237 (2006).

    [10] M. Y. Jeon, J. Zhang, Z. Chen, "Characterization of Fourier domain mode locked wavelength swept laser for optical coherence tomography imaging," Opt. Exp. 16(6), 3727-3737 (2008).

    [11] C. M. Eigenwillig, W. Wieser, B. R. Biedermann, et al., "Subharmonic Fourier domain mode locking," Opt. Lett. 34(6), 725-727 (2009).

    [12] R. Huber, D. C. Adler, J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31(20), 2975-2977 (2006).

    [13] E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Exp. 14, 4403-4411 (2006).

    [14] H. Lim, M. Mujat, C. Kerbage, E. C. W. Lee, Y. Chen, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Exp. 14, 12,902-12,908 (2006).

    [15] S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, P. E. Andersen, "Fourier domain modelocked swept source at 1050 nm based on a tapered amplifier," Opt. Exp. 18, 15,820-15,831 (2010).

    [16] K. H. Y. Cheng, B. A. Standish, V. X. D. Yang, K. K. Y. Cheung, X. Gu, E. Y. Lam, K. K. Y. Wong, "Wavelength-swept spectral and pulse shaping utilizing hybrid Fourier domain mode locking by fiber optical parametric and erbium-doped fiber amplifiers," Opt. Exp. 18, 1909-1915 (2010).

    [17] T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, R. Huber, "Raman-pumped Fourier-domain mode-locked laser: Analysis of operation and application for optical coherence tomography," Opt. Lett. 33, 2815-2817 (2008).

    [18] S. Y. Ryu, J. W. You, Y. K. Kwak et al., "Design of a prism to compensate the image-shifting error of the acousto-optic tunable filter," Opt. Exp. 16(22), 17,138-17,147 (2008).

    [19] M. Chen, Z. Ding, L. Xu et al., "All-fiber ringcavity- based frequency swept laser source for frequency domain OCT," Chin. Opt. Lett. 8(2), 202-205 (2010).

    [20] M. Kourogi, Y. Kawamura, Y. Yasuno et al., "Programmable high speed ( 1 MHz) Vernier-modelocked frequency-swept laser for OCT imaging," Proc. SPIE 6847, 68470Z1-68470Z8 (2008).

    [21] S. H. Yun, C. Boudoux, M. C. Pierce et al., "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16(1), 293-295 (2004).

    [22] V. J. Srinivasan, R. Huber, I. Gorczynska et al., "High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32(4), 361-363 (2007).

    [23] S. H. Yun, C. Boudoux, G. J. Tearney et al., "Highspeed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28(20), 1981-1983 (2003).

    [24] H. Lim, J. F. De Boer, B. H. Park et al., "Optical frequency domain imaging with a rapidly swept laser in the 815 870 nm range," Opt. Exp. 14(13), 5937-5944 (2006).

    [25] W. Y. Oh, S. H. Yun, G. J. Tearney et al., "115 kHz tuning repetition rate ultrahigh-speed wavelengthswept semiconductor laser," Opt. Lett. 30(23), 3159-3161 (2005).

    [26] K. Totsuka, K. Isamoto, T. Sakai et al., "MEMS scanner-based swept source laser for optical coherence tomography," Proc. SPIE 7554, 75542Q-1 (2010).

    [27] T. Amano, H. Hiro-Oka, D. H. Choi et al., "Optical frequency-domain reflectometry with a rapid wavelength- scanning superstructure-grating distributed Bragg reflector laser," Appl. Opt. 44(5), 808-816 (2005).

    MINGHUI CHEN, ZHIHUA DING, LING WANG, TONG WU, YUANHAO TAO. A NOVEL SWEPT LASER SOURCE BASED ON COMBINED TUNABLE FILTERS FOR OCT[J]. Journal of Innovative Optical Health Sciences, 2011, 4(1): 53
    Download Citation