• Journal of Inorganic Materials
  • Vol. 34, Issue 1, 103 (2019)
Long-Tao MA, Chun-Yi ZHI, [in Chinese], and [in Chinese]
Author Affiliations
  • Department of Materials Science and Engineering, City University of Hong Kong, Hongkong 999077, China
  • show less
    DOI: 10.15541/jim20180260 Cite this Article
    Long-Tao MA, Chun-Yi ZHI, [in Chinese], [in Chinese]. Fe, N Doped 2D Porous Carbon Bifunctional Catalyst for Zinc-air Battery[J]. Journal of Inorganic Materials, 2019, 34(1): 103 Copy Citation Text show less
    References

    [1] Y XU, Y ZHANG, Z GUO et al. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem. Int. Ed., 54, 15390-15394(2015).

    [2] J FU, X WANG, G LI et al. Pomegranate-inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal-air batteries. Angew. Chem. Int. Ed., 55, 4977-4982(2016).

    [3] D LEE, J FU, F HASSAN et al. Flexible high-energy polymer- electrolyte-based rechargeable zinc-air batteries. Adv. Mater., 27, 5617-5622(2015).

    [4] H ABBASI, S SALEHI, R GHORBANI et al. Design and manufacturing of a micro zinc-air fuel cell for mobile applications. Iranica. Energy Environ., 4, 110-115(2013).

    [5] H KARAHAN, L WEI, S ZHAI et al. 29(38): 1701410- 1-10(2017).

    [6] J ZHANG, B SUN, Y ZHAO et al. Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries. Angew. Chem. Int. Ed., 56, 8505-8509(2017).

    [7] B LIU, P YAN, W XU et al. 7(14): 1602605-1-10(2017).

    [8] Z WEN, Y HOU, T HUANG et al. 4(11): 1400337-1-8(2014).

    [9] X XU, C OUYANG, B NI et al. 29(27): 1701354-1-7(2017).

    [10] D ZHU, C GUO, J LIU et al. 7(23): 1700518-1-26(2017).

    [11] L YE, G CHAI. 27(14): 1606190-1-8(2017).

    [12] H ZHONG, J WANG, Y ZHANG et al. ZIF-8 derived graphene- based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem. Int. Ed., 53, 14235-14239(2014).

    [13] X CHEN, B LIU, C ZHONG et al. 7(18): 1700779-1-11(2017).

    [14] S CHEN, J CHENG, L MA et al. Light-weight 3D Co-N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc-air batteries. Nanoscale, 10, 10412-10419(2018).

    [15] L MA, Z PEI, S CHEN et al. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano, 12, 1949-1958(2018).

    [16] M KOPER, J ZAGAI. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed., 55, 14510-14521(2016).

    [17] Y ZHANG, H ZHONG, J WANG et al. ZIF-8 derived graphene- based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem. Int. Ed., 53, 14235-14239(2014).

    [18] W LI, C SU, H CHENG et al. 7(13): 1602420-1-12(2017).

    [19] K LIU, F MENG, H ZHONG et al. Recent advances in metal-nitrogen-carbon catalysts for electrochemical water splitting. Mater. Chem. Front., 1, 2155-2173(2017).

    [20] X LIU, Y ZHU, B ZHANG et al. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem. Int. Ed., 53, 10673-10677(2014).

    [21] V GOELLNER, V ARMEL, A ZITOLO et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater., 14, 937-945(2015).

    [22] J MA, G EDUARDO, H SHEN et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem. Int. Ed., 129, 13988-13992(2017).

    [23] H FAN, K FU, L MA et al. Metal-organic framework/layered carbon nitride nano-sandwiches for superior asymmetric supercapacitor. Chemistry Select, 1, 3730-3738(2016).

    [24] L MA, H FAN, J WANG et al. Water-assisted ions in situ intercalation for porous polymeric graphitic carbon nitride nanosheets with superior photocatalytic hydrogen evolution performance. Appl. Catal. B:. Environ., 190, 93-102(2016).

    [25] L MA, K FU, H FAN et al. Protonation of g carbon nitride (g-C3N4) for an electrostatically self-assembling carbon@g-C3N4 core-shell nanostructure toward high hydrogen evolution. ACS Sustain. Chem. Eng., 5, 7093-7103(2017).

    [26] G FERRERO, K PREUSS, A MARINOVIC et al. Fe-N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions. ACS Nano, 10, 5922-5932(2016).

    [27] L GU, W JIANG, L LI et al. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-N-C.. Am. Chem. Soc., 138, 3570-3578(2016).

    [28] D MALKO, T LOPES, A KUCERNAK. In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalysts. Nat. Commun., 7, 13285-13292(2016).

    Long-Tao MA, Chun-Yi ZHI, [in Chinese], [in Chinese]. Fe, N Doped 2D Porous Carbon Bifunctional Catalyst for Zinc-air Battery[J]. Journal of Inorganic Materials, 2019, 34(1): 103
    Download Citation