• Laser & Optoelectronics Progress
  • Vol. 53, Issue 10, 100606 (2016)
Du Yong1、*, Si Jinhai1, Chen Tao1, Li Sijia1, Cui Wei1, Li Cunxia2, and Hou Xun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop53.100606 Cite this Article Set citation alerts
    Du Yong, Si Jinhai, Chen Tao, Li Sijia, Cui Wei, Li Cunxia, Hou Xun. Quasi-Distributed High Temperature Sensor Based on Fiber Bragg Grating[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100606 Copy Citation Text show less
    References

    [1] Yang Xiufeng, Zhang Chunyu, Tong Zhengrong, et al. Experimental research of temperature sensing properties of a novel fiber grating[J]. Chinese J Lasers, 2011, 38(4): 0405005.

    [2] Zhan Yage, Xiang Shiqing, He Hong, et al. Study on high temperature optic fiber grating sensor[J]. Chinese J Lasers, 2005, 32(9): 1235-1238.

    [3] Peng B J, Zhao Y, Yang J, et al. Pressure sensor based on a free elastic cylinder and birefringence effect on an FBG with temperature-compensation[J]. Measurement, 2005, 38(2): 176-180.

    [4] He Shaoling, Hao Fenghuan, Liu Pengfei, et al. High precision fiber Bragg grating pressure sensor with real-time temperature compensation[J]. Chinese J Lasers, 2015, 42(6): 0605003.

    [5] Liu Xiong. On the application of fiber optical sensor to geomechanics and geotechnical engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(5): 588-591.

    [6] Tennyson R C, Coroy T, Duck G, et al. Fibre optic sensors in civil engineering structures[J]. Canadian Journal of Civil Engineering, 2000, 27(5): 880-889.

    [7] Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 1989, 14(15): 823-825.

    [8] Hill K O, Malo B, Bilodeau F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask[J]. Applied Physics Letters, 1993, 63(3): 1035-1037.

    [9] Yang Zhangcheng, Xu Hanfeng, Dong Xinyong. Research development of high-temperature resistant fiber gratings[J]. Laser & Optoelectronics Progress, 2012, 49(5): 050003.

    [10] Rathje J, Kristensen M, Pedersen J E. Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings[J]. Journal of Applied Physics, 2000, 88(2): 1050-1055.

    [11] Smelser C W, Mihailov S J, Grobnic D. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask[J]. Optics Express, 2005, 13(14): 5377-5386.

    [12] Kondo Y, Nouchi K, Mitsuyu T, et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J]. Optics Letters, 1999, 24(10): 646-648.

    [13] Martinez A, Dubov M, Khrushchev I, et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 2004, 40(19): 1170-1172.

    [14] Grobnic D, Mihailov S J, Smelser C W, et al. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications[J]. IEEE Photonics Technology Letters, 2004, 16(11): 2505-2507.

    [15] Zhan C, Kim J H, Yin S, et al. High temperature sensing using higher-order-mode rejected sapphire fiber gratings[J]. Optical Memory and Neural Networks, 2007, 16(4): 204-210.

    [16] Busch M, Ecke W, Latka I, et al. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications[J]. Measurement Science and Technology, 2009, 20(11): 115301.

    [17] Tahir B, Ali J, Rahman R A. Fabrication of fiber grating by phase mask and its sensing application[J]. Journal of Optoelectronics and Advanced Materials, 2006, 8(4): 1604-1609.

    [18] Song Zhiqiang, Qi Haifeng, Li Shujuan, et al. Research on control technology of fiber grating wavelength by pulling force in grating fabrication[J]. Acta Optica Sinica, 2013, 33(7): 0706009.

    [20] Othonos A, Lee X, Measures R M. Superimposed multiple Bragg gratings[J]. Electronics Letters, 1994, 30(23): 1972-1974.

    [21] Wang Min, Qiao Xueguang, Jia Zhen′an, et al. Research on demodulating techniques for fiber Bragg grating sensor system[J]. Laser & Optoelectronics Progress, 2004, 41(12): 54-58.

    [22] Zhang Caixia, Zhang Zhenwei, Zheng Wanfu, et al. Study of a quasi-distributed optical fiber sensing system based on ultra-weak fiber Bragg gratings[J]. Chinese J Lasers, 2014, 41(4): 0405004.

    [23] Feng Y, Zhang H, Li Y L, et al. Temperature sensing of metal-coated fiber Bragg grating[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(4): 511-519.

    [24] Bubel G M, Krause J T, Bickta B J, et al. Mechanical reliability of metallized optical fiber for hermetic terminations[J]. Journal of Lightwave Technology, 1989, 7(10): 1488-1493.

    CLP Journals

    [1] Peng Ding, Xiaopeng Dong, Xiaowei Ye. Research on Measurement of Fiber Bragg Grating Considering the Cross-Sensitivity of Temperature and Strain[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020605

    [2] Yonghong Wang, Mingyi Zhang, Chunwei Zhang, Xiaoyu Bai. Application of Enhancement Micro FBG Strain Sensor in Model Experiment of Static Pressure Precast Pile[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050606

    [3] Houjun Cao, Jinhai Si, Tao Chen, Ruize Wang, Bo Gao, Lihe Yan, Xun Hou. Temperature and Strain Dual-Parameter Heterogeneous Fiber Bragg Grating Sensor Made by Femtosecond Laser[J]. Chinese Journal of Lasers, 2018, 45(7): 0702009

    [4] Yonghong Wang, Mingyi Zhang, Chunwei Zhang, Xiaoyu Bai, Qian Liu. Application of FBG Strain Sensor with Low Temperature Sensitivity in Static Pressure PHC Pipe Pile Penetration Test[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040602

    [5] Xiaoli Zhao, Yumin Zhang, Runtao Yang, Fei Luo, Lianqing Zhu. High-Temperature Fiber Laser Sensing Based on Low-Reflectivity Regenerated Fiber Bragg Grating and Saturable Absorber[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060605

    Du Yong, Si Jinhai, Chen Tao, Li Sijia, Cui Wei, Li Cunxia, Hou Xun. Quasi-Distributed High Temperature Sensor Based on Fiber Bragg Grating[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100606
    Download Citation