• Laser & Optoelectronics Progress
  • Vol. 53, Issue 9, 90005 (2016)
Wang Yingying1、2、*, Dai Shixun1、2, Luo Baohua1、2, Zhang Peiqing1、2, Wang Xunsi1、2, and Liu Zijun1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop53.090005 Cite this Article Set citation alerts
    Wang Yingying, Dai Shixun, Luo Baohua, Zhang Peiqing, Wang Xunsi, Liu Zijun. Progress in Infrared Supercontinuum Generation in Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(9): 90005 Copy Citation Text show less
    References

    [1] Schliesser A, Picqué N, Hnsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 2012, 6(7): 440-449.

    [2] Michaels C A, Masiello T, Chu P M. Fourier transform spectrometry with a near-infrared supercontinuum source[J]. Applied Spectroscopy, 2009, 63(5): 538-543.

    [3] Kumar M, Islam M N, Terry F L, et al. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source[J]. Applied Optics, 2012, 51(15): 2794-2807.

    [4] Waynant R W, Ilev I K, Gannot I. Mid-infrared laser applications in medicine and biology[J]. Philosophical Transactions of the Royal Society A, 2001, 359(1780): 635-644.

    [5] Seddon A B. A prospective for new mid-infrared medical endoscopy using chalcogenide glasses[J]. International Journal of Applied Glass Science, 2011, 2(3): 177-191.

    [6] Eggleton B J, Davies B L, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 2011, 5(3): 141-148.

    [7] Wilson R H, Tapp H S. Mid-infrared spectroscopy for food analysis: Recent new applications and relevant developments in sample presentation methods[J]. TrAC Trends in Analytical Chemistry, 1999, 18(2): 85-93.

    [8] Slusher R E, Lenz G, Hodelin J, et al. Large Raman gain and nonlinear phase shifts in high-purity As2Se3chalcogenide fibers[J]. Journal of the Optical Society of America B, 2004, 21(6): 1146-1155.

    [9] Dai Shixun, Yu Xingyan, Zhang Wei, et al. Research progress of chalcogenide glass photonic crystal fiber[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602.

    [10] Wang Cui, Dai Shixun, Zhang Peiqing, et al. Research progress of infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030001.

    [11] Agrawal G P. Nonlinear fiber optics[M]. Jia Dongfang, Yu Zhenhong, Transl. Beijing: Publishing House of Electronics Industry, 2010: 40-117.

    [12] Zhang Bin. Study on controllable visible supercontinuum generation and mid-IR supercontinuum generation[D]. Changsha: National University of Defense Technology, 2012: 23-34.

    [13] Wang Cui, Dai Shixun, Yang Peilong, et al. Infrared supercontinuum generation in chalcogenide-tellurite compound microstructured optical fiber[J]. Acta Optica Sinica, 2015, 35(8): 0816003.

    [14] Gao W, Duan Z, Asano K, et al. Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber[J]. Applied Physics B, 2014, 116(4): 847-853.

    [15] Deng D, Liu L, Tuan T H, et al. Mid-infrared supercontinuum covering 3-10 μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber[C]. Advanced Solid State Lasers, Berlin, 2015: ATu2A.32.

    [16] Petersen C R, Mller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11): 830-834.

    [17] Hudson D D, Baudisch M, Werdehausen D, et al. 1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA[J]. Optics Letters, 2014, 39(19): 5752-5755.

    [18] Théberge F, Thiré N, Daigle J F, et al. Multioctave infrared supercontinuum generation in large-core As2S3 fibers[J]. Optics Letters, 2014, 39(22): 6474-6477.

    [19] Zhang B, Guo W, Yi Y, et al. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation[J]. Journal of the American Ceramic Society, 2015, 98(5): 1389-1392.

    [20] Yu Y, Zhang B, Gai X, et al. 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power[J]. Optics Letters, 2015, 40(6): 1081-1084.

    [21] Kubat I, Agger C S, Mller U, et al. Mid-infrared supercontinuum generation to 12.5 μm in large NA chalcogenide step-index fibers pumped at 4.5 μm[J]. Optics Express, 2014, 22(6): 16169-16182.

    [22] Kubat I, Bang O. Multimode supercontinuum generation in chalcogenide glass fibres[J]. Optics Express, 2016, 24(3): 2513-2526.

    [23] Saghaei H, Moravvej-Farshi M K, Ebnali-Heidari M, et al. Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers solid core PCF versus SIF[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 279-286.

    [24] Zhu Qingde, Wang Xunsi, Zhang Peiqing, et al. Fabrication and optical properties of chalcogenide As2S3 suspended-core fiber[J]. Acta Optica Sinica, 2015, 35(12): 1206004.

    [25] Li Xuyou, Xu Zhenlong, Ling Weiwei, et al. Numerical simulation and analysis of photonic crystal fibers with high nonlinearity and flattened chromatic dispersion[J]. Chinese J Lasers, 2014, 41(5): 0505003.

    [26] Mller U, Yu Y, Kubat I, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[J]. Optics Express, 2015, 23(3): 3282-3291.

    [27] Liu L, Cheng T, Nagasaka K, et al. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion[J]. Optics Letters, 2016, 41(2): 392-395.

    [28] Saghaei H, Ebnali-Heidari M, Moravvej-Farshi M K. Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers[J]. Applied Optics, 2015, 54(8): 2072-2079.

    [29] Baili A, Cherif R, Zghal M. Two octaves spanning supercontinuum in highly nonlinear As2Se3 nanophotonic crystal fiber for midinfrared applications[J]. Journal of Nanophotonics, 2015, 9(1): 093059.

    [30] Saini T S, Kumar A, Sinha R K. Broadband mid-infrared supercontinuum spectra spanning 2-15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber[J]. Journal of Lightwave Technology, 2015, 33(18): 3914-3920.

    [31] Zhang P, Ma B, Zhang J, et al. Simulation study of mid-infrared supercontinuum generation in Ge23Sb12S65-based chalcogenide photonic crystal fiber[J]. Optik, 2016, 127(5): 2732-2736.

    [32] Li Chaoran, Dai Shixun, Wu Yuehao, et al. Research progress of chalcogenide glass based micro-nanophotonic devices[J]. Laser & Optoelectronics Progress, 2015, 52(2): 020005.

    [33] Al-Kadry A, Baker C,Amraoui M E, et al. Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects[J]. Optics Letters, 2013, 38(7): 1185-1187.

    [34] Rudy C W, Marandi A, Vodopyanov K L, et al. Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser[J]. Optics Letters, 2013, 38(15): 2865-2868.

    [35] Shabahang S, Tao G, Marquez M P, et al. Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation[J]. Journal of the Optical Society of America B, 2014, 31(3): 450-457.

    [36] Al-Kadry A, Amraoui M E, Messaddeq Y, et al. Two octaves mid-infrared supercontinuum generation in As2Se3 microwires[J]. Optics Express, 2014, 22(25): 31131-31137.

    [37] Sun Y, Dai S, Zhang P, et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures[J]. Optics Express, 2015, 23(18): 23472-23483.

    CLP Journals

    [1] Gao Pengfei, Li Xiaohui, Luo Wenfeng, Zou Defeng, Chai Tong, Pang Xingxing. Numerical Simulation of Effect of Pump Wavelength on Mid-Infrared Supercontinuum[J]. Chinese Journal of Lasers, 2017, 44(7): 703023

    Wang Yingying, Dai Shixun, Luo Baohua, Zhang Peiqing, Wang Xunsi, Liu Zijun. Progress in Infrared Supercontinuum Generation in Chalcogenide Glass Fibers[J]. Laser & Optoelectronics Progress, 2016, 53(9): 90005
    Download Citation