• Photonic Sensors
  • Vol. 3, Issue 2, 97 (2013)
C. R. LIAO and D. N. WANG*
Author Affiliations
  • Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
  • show less
    DOI: 10.1007/s13320-012-0060-9 Cite this Article
    C. R. LIAO, D. N. WANG. Review of Femtosecond Laser Fabricated Fiber Bragg Gratings for High Temperature Sensing[J]. Photonic Sensors, 2013, 3(2): 97 Copy Citation Text show less
    References

    [1] E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Optics Letters, vol. 21, no. 24, pp. 2023-2025, 1996.

    [2] S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Optics Letters, vol. 28, no. 12, pp. 995-997, 2003.

    [3] S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” Journal of Lightwave Technology, vol. 22, no. 1, pp. 94-100, 2004.

    [4] S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, “Fiber Bragg grating inscription by high intensity femtosecond UV laser light: comparison with other existing methods of fabrication,” Journal Optical Society of America: B, vol. 22, no. 2, pp. 354-361, 2005.

    [5] A. Dragomir, D. N. Nikogosyan, K. A. Zagorulko, P. G. Kryukov, and E. M. Dianov, “Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation,” Optics Letters, vol. 28, no. 22, pp. 2171-2173, 2003.

    [6] K. Zagorulko, P. Kryukov, Yu. Larionov, A. Rybaltovsky, and E. Dianov, S. Chekalin, Yu. Matveets, and V. Kompanets, “Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation,” Optics Express, vol. 12, no. 24, pp. 5996-6001, 2004.

    [7] A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electronics Letters, vol. 40, no. 19, pp. 1170-1172, 2004.

    [8] C. Smelser, S. Mihailov, and D. Grobnic, “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Optics Express, vol. 13, no. 14, pp. 5377-5386, 2005.

    [9] D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 ℃ of silica fiber Bragg gratings made with ultrafast laser radiation,” Measurement Science Technology, vol. 17, no. 5, pp. 1009-1013, 2006.

    [10] Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Optics Express, vol. 16, no. 26, pp. 21239-21247, 2008.

    [11] C. R. Liao, Y. H. Li, D. N. Wang, T. Sun, and K. T. V. Grattan, “Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by femtosecond laser,” IEEE Sensors Journal, vol. 10, no. 11, pp. 1675-1681, 2010.

    [12] Y. H. Li, M. W. Yang, D. N. Wang, J. Lu, T. Sun, and K. T. V. Grattan, “Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation,” Optics Express, vol. 17, no. 22, pp. 19785-19790, 2009.

    [13] Y. H. Li, M. W. Yang, C. R. Liao, D. N. Wang, J. Lu, and P. X. Lu, “Prestressed fiber Bragg grating with high temperature stability,” Journal of Lightwave Technology, vol. 29, no. 10, pp. 1555-1559, 2011.

    [14] S. K. Hoeffgen, H. Henschel, J. Kuhnhenn, U. Weinand, C. Caucheteur, D. Grobnic, and S. J. Mihailov, “Comparison of the radiation sensitivity of fiber Bragg grating made by four different manufacturers,” IEEE on Transactions Nuclear Science, vol. 58, no. 3, pp. 906-909, 2011.

    [15] D. Grobnic, S. J. Mihailov, R. B. Walker, and C. W. Smelser, “Self-packaged type II femtosecond IR laser induced fiber Bragg grating for temperature applications up to 1000 ℃,” in Proc. SPIE, vol. 7753, pp. 77530J, 2011.

    [16] D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photonic Technology Letters, vol. 16, no. 11, pp. 2505-2507, 2004.

    [17] M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Measurement Science Technology, vol. 20, no. 11, pp. 115301-1-115301-6, 2009.

    [18] S. J. Mihailov, D. Grobnic, and C. W. Smelser, “High-temperature multiparameter sensor based on sapphire fiber Bragg gratings,” Optics Letters, vol. 35, no. 16, pp. 2810-2812, 2010.

    [19] L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibers,” Electronics Letters, vol. 41, no.11, pp. 638-640, 2005.

    [20] Y. H. Li, D. N. Wang, and L. Jin, “Single-mode grating reflection in all-solid photonic bandgap fibers inscribed by use of femtosecond laser pulse irradiation through a phase mask,” Optics Letters, vol. 34, no. 8, pp.1264-1266, 2009.

    [21] C. M. Jewart, Q. Q. Wang, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, “Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Optics Letters, vol. 35, no. 9, pp. 1443-1445, 2010.

    CLP Journals

    [1] Dongkai Chu, Xiaoyan Sun, Youwang Hu, Xinran Dong, Kai Yin, Zhi Luo, Jianying Zhou, Cong Wang, Ji'an Duan. Micro-channel etching characteristics enhancement by femtosecond laser processing high-temperature lattice in fused silica glass[J]. Chinese Optics Letters, 2017, 15(7): 071403

    [2] Dong-Ning Wang. Review of femtosecond laser fabricated optical fiber high temperature sensors [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091204

    C. R. LIAO, D. N. WANG. Review of Femtosecond Laser Fabricated Fiber Bragg Gratings for High Temperature Sensing[J]. Photonic Sensors, 2013, 3(2): 97
    Download Citation