• Laser & Optoelectronics Progress
  • Vol. 53, Issue 6, 61407 (2016)
Bai Jiandong*, Wang Jieying, and Wang Junmin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.061407 Cite this Article Set citation alerts
    Bai Jiandong, Wang Jieying, Wang Junmin. Rapid Measurement of Laser Linewidth Based on Fiber-Delayed AOM-Shifted Self-Heterodyne Scheme[J]. Laser & Optoelectronics Progress, 2016, 53(6): 61407 Copy Citation Text show less
    References

    [1] Mihélic F, Bacquet D, Zemmouri J, et al.. Ultrahigh resolution spectral analysis based on a Brillouin fiber laser[J]. Optics Letters, 2010, 35(3): 432-434.

    [2] Jiang Y Y, Ludlow A D, Lemke N D, et al.. Making optical atomic clocks more stable with 10-16-level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161.

    [3] Bonfrate G, Vaninetti F, Negrisolo F. Single-frequency MOPA Er3+ DBR fiber laser for WDM digital telecommunication systems[J]. Photonic Technology Letters, 1998, 10(8): 1109-1111.

    [4] Ludlow A D, Boyd M M, Zelevinsky T, et al.. Systematic study of the 87Sr clock transition in an optical lattice[J]. Physical Review Letters, 2006, 96(3): 033003.

    [5] Webster S A, Oxborrow M, Gill P. Subhertz-linewidth Nd:YAG laser[J]. Optics Letters, 2004, 29(13): 1497-1499.

    [6] San Haisheng, Wen Jimin, Liu Jian, et al.. Measurement system of ultra-wideband frequency response based on optical heterodyne technique[J]. Acta Optica Sincia, 2005, 25(11): 1497-1500.

    [7] Iiyama K, Hayashi K, Ida Y, et al.. Delayed self-homodyne method using solitary monomode fiber for laser linewidth measurements[J]. Electronics Letters, 1989, 25(23): 1589-1590.

    [8] Okoshi T, Kikuchi K, Nakayama A. Novel method for high resolution measurement of laser output spectrum[J]. Electronics Letters, 1980, 16(16): 630-631.

    [9] Chen M, Meng Z, Wang J F, et al.. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 2015, 23(5): 6803-6808.

    [10] Mercer L B. 1/f frequency noise effects on self-heterodyne linewidth measurements[J]. Journal of Lightwave Technology, 1991, 9(4): 485-493.

    [11] Richter L E, Mandelberg H I, Kruger M S, et al.. Linewidth determination from self-heterodyne measurements with subcoherence delay times[J]. Journal of Quantum Electronics, 1986, 22(11): 2070-2074.

    [12] Jia Yudong, Ou Pan, Yang Yuanhong, et al.. Short fibre delayed self-heterodyne interferometer for ultra-narrow laser linewidth measurement[J]. Beijing University of Aeronautics and Astronautics, 2008, 34(5): 568-571.

    [13] Gallion P B, Debarge G. Quantum phase noise and field correlation in single frequency semiconductor laser systems[J]. Journal of Quantum Electronics, 1984, 20(4): 343-349.

    [14] Goodman J W. Statistical optics[M]. New York: Wiley, 1985.

    [15] Canagasabey A, Michie A, Canning J, et al.. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers[J]. Sensors, 2011, 11(10): 9233-9241.

    [16] Iiyama K, Hayashi K, Ida Y, et al.. Reflection-type delayed self-homodyne-heterodyne method for optical linewidth measurements[J]. Journal of Lightwave Technology, 1991, 9(5): 635-640.

    [17] Lavielle V, Lorgere I, Le Gouet J L, et al.. Wideband versatile radio-frequency spectrum analyzer[J]. Optics Letters, 2003, 28(6): 384-386.

    [18] Peng Xuefeng, Ma Xiurong, Zhang Shuanggen, et al.. Effect of beat frequency linetype on measurement of laser linewidth using two independent lasers[J]. Chinese J Lasers, 2011, 38(4): 0408002.

    Bai Jiandong, Wang Jieying, Wang Junmin. Rapid Measurement of Laser Linewidth Based on Fiber-Delayed AOM-Shifted Self-Heterodyne Scheme[J]. Laser & Optoelectronics Progress, 2016, 53(6): 61407
    Download Citation