• Microelectronics
  • Vol. 51, Issue 2, 203 (2021)
GUO Xinzhen, YANG Xiao, and GUO Yang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.200287 Cite this Article
    GUO Xinzhen, YANG Xiao, GUO Yang. Design of a Low Power and Low Delay DNU-Tolerant Latch[J]. Microelectronics, 2021, 51(2): 203 Copy Citation Text show less
    References

    [1] AMUSAN O A, WITULSKI A F, MASSENGILL L W, et al. Charge collection and charge sharing in a 130 nm CMOS technology [J]. IEEE Trans Nucl Sci, 2006, 53(6): 3253-3258.

    [2] SHE X, LI N, TONG J. SEU tolerant latch based on error detection [J]. IEEE Trans Nucl Sci, 2012, 59(1): 211-214.

    [3] CALIN T, NICOLAIDIS M, VELAZCO R. Upset hardened memory design for submicron CMOS technology [J]. IEEE Trans Nucl Sci, 1996, 43(6): 2874-2878.

    [4] LI Y, WANG H, YAO S, et al. Double node upsets hardened latch circuits [J]. J Elec Test, 2015, 31(5-6): 537-548.

    [5] EFTAXIOPOULOS N, AXELOS N, ZERVAKIS G, et al. Delta DICE: a double node upset resilient latch [C] ∥ IEEE 58th Int MWSCAS. Fort Collins, CO, USA. 2015: 1-4.

    [6] KATSAROU K, TSIATOUHAS Y. Soft error interception latch: double node charge sharing SEU tolerant design [J]. Elec Lett, 2015, 51(4): 330-332.

    [7] EFTAXIOPOULOS N, AXELOS N, PEKMESTZI K. DIRT latch: a novel low cost double node upset tolerant latch [J]. Microelec Reliab, 2017, 68: 57-68.

    [8] YAN A, YANG K, HUANG Z, et al. A double-node-upset self-recoverable latch design for high performance and low power application [J]. IEEE Trans Circ Syst II: Expr Bri, 2018, 66(2): 287-291.

    [9] SHESHADRI V B, BHUVA B L, REED R A, et al. Effects of multi-node charge collection in flip-flop designs at advanced technology nodes [C] ∥ IEEE Int Reliab Phys Symp. Anaheim, CA, USA. 2010: 1026-1030.

    [10] FAZELI M, MIREMADI S G, EJLALI A, et al. Low energy single event upset/single event transient-tolerant latch for deep submicron technologies [J]. IET Comp Dig Tech, 2009, 3(3): 289-303.

    [11] STROUD C E. Reliability of majority voting based VLSI fault-tolerant circuits [J]. IEEE Trans VLSI Syst, 1994, 2(4): 516-521.

    [12] AMIRANY A, RAJAEI R. Low power, and highly reliable single event upset immune latch for nanoscale CMOS technologies [C] ∥ ICEE. Mashhad, Iran. 2018: 103-107.

    [13] KATSAROU K, TSIATOUHAS Y. Double node charge sharing SEU tolerant latch design [C] ∥ IEEE 20th IOLTS. Catalunya, Spain. 2014: 122-127.

    [14] HUI X, YUN Z. Circuit and layout combination technique to enhance multiple nodes upset tolerance in latches [J]. IEICE Elec Expr, 2015, 12(9): 1-7.

    [15] EFTAXIOPOULOS N, AXELOS N, PEKMESTZI K. DONUT: a double node upset tolerant latch [C] ∥ IEEE Comp Society Annual Symp VLSI. Montpellier, France. 2015: 509-514.

    [16] RAJAEI R, TABANDEH M, FAZELI M. Single event multiple upset (SEMU) tolerant latch designs in presence of process and temperature variations [J]. J Circ, Syst and Comp, 2015, 24(1): 1550007.

    [17] LIANG H, LI X, HUANG Z, et al. Highly robust double node upset resilient hardened latch design [J]. IEICE Trans Elec, 2017, 100(5): 496-503.

    [18] YAN A, HUANG Z, YI M, et al. Double-node-upset-resilient latch design for nanoscale CMOS technology [J]. IEEE Trans VLSI Syst, 2017, 25(6): 1978-1982.

    [19] YAN A, HUANG Z, FANG X, et al. Single event double-upset fully immune and transient pulse filterable latch design for nanoscale CMOS [J]. Microelec J, 2017, 61: 43-50.

    [21] YAN A, HU Y, SONG J, et al. Single-event double-upset self-recoverable and single-event transient pulse filterable latch design for low power applications [C] ∥ DATE. Florence, Italy. 2019: 1679-1684.

    [22] YAMAMOTO Y, NAMBA K. Construction of latch design with complete double node upset tolerant capability using C-element [C] ∥ IEEE Int Symp DFT. Chicago, IL, USA. 2018: 1-6.

    GUO Xinzhen, YANG Xiao, GUO Yang. Design of a Low Power and Low Delay DNU-Tolerant Latch[J]. Microelectronics, 2021, 51(2): 203
    Download Citation