• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 3, 328 (2020)
Jing WANG*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 20.011 Cite this Article
    WANG Jing. Optical nonreciprocity in two-cavity optomechanical system[J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 328 Copy Citation Text show less
    References

    [5] Song L N, Zheng Q, Xu X, et al. Optimal unidirectional amplification induced by optical gain in optomechanical systems[J]. Physical Review A, 2019, 100(4): 043835.

         Song L N, Zheng Q, Xu X, et al. Optimal unidirectional amplification induced by optical gain in optomechanical systems[J]. Physical Review A, 2019, 100(4): 043835.

    [6] Jiang C, Song L N, Li Y. Directional phase-sensitive amplifier between microwave and optical photons[J]. Physical Review A, 2019, 99(2): 023823.

         Jiang C, Song L N, Li Y. Directional phase-sensitive amplifier between microwave and optical photons[J]. Physical Review A, 2019, 99(2): 023823.

    [7] Jiang C, Song L N, Li Y. Directional amplifier in an optomechanical system with optical gain[J]. Physical Review A, 2018, 97(5): 053812.

         Jiang C, Song L N, Li Y. Directional amplifier in an optomechanical system with optical gain[J]. Physical Review A, 2018, 97(5): 053812.

    [8] Xu X W, Song L N, Zheng Q, et al. Optomechanically induced nonreciprocity in a three-mode optomechanical system[J]. Physical Review A, 2018, 98(6): 063845.

         Xu X W, Song L N, Zheng Q, et al. Optomechanically induced nonreciprocity in a three-mode optomechanical system[J]. Physical Review A, 2018, 98(6): 063845.

    [9] Xia C C, Yan X B, Tian X D, et al. Ideal optical isolator with a two-cavity optomechanical system[J]. Optics Communications, 2019, 451: 197-201.

         Xia C C, Yan X B, Tian X D, et al. Ideal optical isolator with a two-cavity optomechanical system[J]. Optics Communications, 2019, 451: 197-201.

    [10] Jiang C, Ji B W, Cui Y S, et al. Quantum-limited directional amplififier based on a triple-cavity optomechanical system[J]. Optics Express, 2018, 2(12): 15255-15267.

         Jiang C, Ji B W, Cui Y S, et al. Quantum-limited directional amplififier based on a triple-cavity optomechanical system[J]. Optics Express, 2018, 2(12): 15255-15267.

    [11] Shen Z, Zhang Y L, Chen Y, et al. Experimental realization of optomechanically induced non-reciprocity[J]. Nature Photonics, 2016, 10(10): 657-661.

         Shen Z, Zhang Y L, Chen Y, et al. Experimental realization of optomechanically induced non-reciprocity[J]. Nature Photonics, 2016, 10(10): 657-661.

    [12] Li B J, Huang R, Xu X W, et al. Nonreciprocal unconventional photon blockade in a spinning optomechanical system[J]. Photonics Research, 2019, 7(6): 630-641.

         Li B J, Huang R, Xu X W, et al. Nonreciprocal unconventional photon blockade in a spinning optomechanical system[J]. Photonics Research, 2019, 7(6): 630-641.

    [13] Lü H, Jiang Y J, Wang Y Z, et al. Optomechanically induced transparency in a spinning resonator[J]. Photonics Research, 2017, 5(4): 367-371.

         Lü H, Jiang Y J, Wang Y Z, et al. Optomechanically induced transparency in a spinning resonator[J]. Photonics Research, 2017, 5(4): 367-371.

    [14] Wang J. The optical nonreciprocal response based on a four-mode optomechanical system[J]. Chinese Physics B, 2020, 29(3): 034210.

         Wang J. The optical nonreciprocal response based on a four-mode optomechanical system[J]. Chinese Physics B, 2020, 29(3): 034210.

    [15] Maayani S, Dahan R, Kligerman Y, et al. Flying couplers above spinning resonators generate irreversible refraction[J]. Nature, 2018, 558: 569.

         Maayani S, Dahan R, Kligerman Y, et al. Flying couplers above spinning resonators generate irreversible refraction[J]. Nature, 2018, 558: 569.

    [16] Korneeva Y P, Vodolazov D Y, Semenov A V, et al. Optical single-photon detection in micrometer-scale NbN bridges[J]. Physical Review Applied, 2018, 9(6): 064037.

         Korneeva Y P, Vodolazov D Y, Semenov A V, et al. Optical single-photon detection in micrometer-scale NbN bridges[J]. Physical Review Applied, 2018, 9(6): 064037.

    [17] Yan X B, Lu H L, Gao F, et al. Perfect optical nonreciprocity in a double-cavity optomechanical system[J]. Frontiers of Physics, 2019, 14(5): 52601.

         Yan X B, Lu H L, Gao F, et al. Perfect optical nonreciprocity in a double-cavity optomechanical system[J]. Frontiers of Physics, 2019, 14(5): 52601.

    [18] He B, Yang L, Jiang X S, et al. Transmission nonreciprocity in a mutually coupled circulating structure[J]. Physical Review Letters, 2018, 120(20): 203904.

         He B, Yang L, Jiang X S, et al. Transmission nonreciprocity in a mutually coupled circulating structure[J]. Physical Review Letters, 2018, 120(20): 203904.

    [19] Yang Q, Hou B P, Lai D G. Local modulation of double optomechanically induced transparency and amplification[J]. Optics Express, 2017, 25(9): 9697-9711.

         Yang Q, Hou B P, Lai D G. Local modulation of double optomechanically induced transparency and amplification[J]. Optics Express, 2017, 25(9): 9697-9711.

    [20] Wang T, Zheng M H, Bai C H, et al. Normal-mode splitting and optomechanically induced absorption, amplification, and transparency in a hybrid optomechanical system[J]. Annalen der Physik, 2018, 530(10): 1800228.

         Wang T, Zheng M H, Bai C H, et al. Normal-mode splitting and optomechanically induced absorption, amplification, and transparency in a hybrid optomechanical system[J]. Annalen der Physik, 2018, 530(10): 1800228.

    [21] Lü H, zdemir S K, Kuang L M, et al. Exceptional points in random-defect phonon lasers[J]. Physical Review Applied, 2017, 8(4): 044020.

         Lü H, zdemir S K, Kuang L M, et al. Exceptional points in random-defect phonon lasers[J]. Physical Review Applied, 2017, 8(4): 044020.

    [22] Lü X Y, Jing H, Ma J Y, et al. PT-symmetry-breaking chaos in optomechanics[J]. Physical Review Letters, 2015, 114(25): 253601.

         Lü X Y, Jing H, Ma J Y, et al. PT-symmetry-breaking chaos in optomechanics[J]. Physical Review Letters, 2015, 114(25): 253601.

    [23] Wang J, Tian X D, Liu Y M, et al. Entanglement manipulation via Coulomb interaction in an optomechanical cavity assisted by two-level cold atoms[J]. Laser Physics, 2018, 28(6): 065202.

         Wang J, Tian X D, Liu Y M, et al. Entanglement manipulation via Coulomb interaction in an optomechanical cavity assisted by two-level cold atoms[J]. Laser Physics, 2018, 28(6): 065202.

    [24] Yan X B, Deng Z J, Tian X D, et al. Entanglement optimization of filtered output fields in cavity optomechanics[J]. Optics Express, 2019, 27(17): 24393-24402.

         Yan X B, Deng Z J, Tian X D, et al. Entanglement optimization of filtered output fields in cavity optomechanics[J]. Optics Express, 2019, 27(17): 24393-24402.

    [25] Guo Y J, Li K, Nie W J, et al. Electromagnetically-induced transparency-like ground-state cooling in a double-cavity optomechanical system[J]. Physical Review A, 2014, 90(5): 053841.

         Guo Y J, Li K, Nie W J, et al. Electromagnetically-induced transparency-like ground-state cooling in a double-cavity optomechanical system[J]. Physical Review A, 2014, 90(5): 053841.

    WANG Jing. Optical nonreciprocity in two-cavity optomechanical system[J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 328
    Download Citation