[1] J. Yao, L. Song, L. V. Wang. Photoacoustic microscopy: Superdepth, superresolution, and superb contrast. IEEE Pulse, 6, 34-37(2015).
[2] W. Qi, T. Jin, J. Rong, H. Jiang, L. Xi. Inverted multiscale optical resolution photoacoustic microscopy. J. Biophoton., 10, 1580-1585(2017).
[3] S. Hu, L. V. Wang. Optical-resolution photoacoustic microscopy: Auscultation of biological systems at the cellular level. Biophys J., 105, 841-847(2013).
[4] C. D. Ly, T. H. Vo, S. Mondal, S. Park, J. Choi, T. T. H. Vu, C. S. Kim, J. Oh. Full-view in vivo skin and blood vessels profile segmentation in photoacoustic imaging based on deep learning. Photoacoustics, 25, 100310(2022).
[5] Y. L. Chen, F. Q. Liu, Y. Guo, J. Cheng, L. Yang, M. Lu, P. Li, J. Xu, T. Yu, Z. G. Wang, Y. Cao. PA/US dual-modality imaging to guide VEGFR-2 targeted photothermal therapy using ZnPc-/PFH-loaded polymeric nanoparticles. Biomater. Sci., 6, 2130-2143(2018).
[6] A. Berezhnoi, M. Schwarz, A. Buehler, S. V. Ovsepian, J. Aguirre, V. Ntziachristos. Assessing hyperthermia-induced vasodilation in human skin in vivo using optoacoustic mesoscopy. J. Biophoton., 11, e201700359(2018).
[7] T. Ida, H. Iwazaki, T. Omuro, Y. Kawaguchi, Y. Tsunoi, S. Kawauchi, S. Sato. Lensless high-resolution photoacoustic imaging scanner for in vivo skin imaging. Opt. Rev., 25, 33-39(2018).
[8] C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, L. V. Wang. Reflection-mode submicron-resolution in vivo photoacoustic microscopy. J. Biomed. Opt., 17, 020501-020501(2012).
[9] J. W. Baik, J. Y. Kim, S. Cho, S. Choi, J. Kim, C. Kim. Super wide-field photoacoustic microscopy of animals and humans in vivo. IEEE Trans. Med. Imaging, 39, 975-984(2019).
[10] K. Maslov, H. F. Zhang, S. Hu, L. V. Wang. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett., 33, 929-931(2008).
[11] S. Park, C. Lee, J. Kim, C. Kim. Acoustic resolution photoacoustic microscopy. Biomed. Eng. Lett., 4, 213-222(2014).
[12] J. Brunker, P. Beard. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids. Sci. Rep., 6, 1-16(2016).
[13] H. Lei, L. A. Johnson, K. A. Eaton, S. Liu, J. Ni, X. Wang, P. D. Higgins, G. Xu. Characterizing intestinal strictures of Crohn’s disease in vivo by endoscopic photoacoustic imaging. Biomed. Opt. Express, 10, 2542-2555(2019).
[14] W. Xing, L. Wang, K. Maslov, L. V. Wang. Integrated optical-and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. Opt. Lett., 38, 52-54(2013).
[15] B. Jiang, X. Yang, Y. Liu, Y. Deng, Q. Luo. Multiscale photoacoustic microscopy with continuously tunable resolution. Opt. Lett., 39, 3939-3941(2014).
[16] X. Song, X. Yu, R. Wang, G. Chen, J. Zeng. Multiscale photoacoustic imaging without motion using single-pixel imaging. J. Biophoton., 15, e202100299(2022).
[17] J. Gröhl, M. Schellenberg, K. Dreher, L. Maier-Hein. Deep learning for biomedical photoacoustic imaging: A review. Photoacoustics, 22, 100241(2021).
[18] M. Kim, G. S. Jeng, I. Pelivanov, M. O’Donnell. Deep-learning image reconstruction for real-time photoacoustic system. IEEE Trans. Med. Imaging, 39, 3379-3390(2020).
[19] S. Antholzer, M. Haltmeier, J. Schwab. Deep learning for photoacoustic tomography from sparse data. Inverse Prob. Sci. Eng., 27, 987-1005(2019).
[20] A. Hauptmann, B. Cox. Deep learning in photoacoustic tomography: Current approaches and future directions. J. Biomed. Opt., 25, 112903-112903(2020).
[21] A. Sharma, M. Pramanik. Improving out-of-focus resolution in acoustic resolution photoacoustic microscopy using deep learning. Proc. SPIE, 11642, 327-334(2021).
[22] Z. Zhang, H. Jin, W. Zhang, W. Lu, Z. Zheng, A. Sharma, M. Pramanik, Y. Zheng. Adaptive enhancement of acoustic resolution photoacoustic microscopy imaging via deep CNN prior. Photoacoustics, 30, 100484(2023).
[23] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, C. Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks, 63-79.
[24] R. Wang, Z. Zhang, R. Chen, X. Yu, H. Zhang, G. Hu, Q. Liu, X. Song. Noise-insensitive defocused signal and resolution enhancement for optical-resolution photoacoustic microscopy via deep learning. J. Biophoton., 16, e202300149(2023).
[25] A. Sharma, M. Pramanik. Convolutional neural network for resolution enhancement and noise reduction in acoustic resolution photoacoustic microscopy. Biomed. Opt. Express, 11, 6826-6839(2020).
[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courvile, Y. Bengio. Generative adversarial networks. Commun. ACM, 63, 139-144(2020).
[27] C. Doersch. Tutorial on variational autoencoders(2016).
[28] D. Rezende, S. Mohamed. Variational inference with normalizing flows, 1530-1538.
[29] J. Ho, A. Jain, P. Abbeel. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst., 33, 6840-6851(2020).
[30] Y. Song, S. Ermon. Improved techniques for training score-based generative models. Proc. Adv. Neural Inf. Process. Syst., 33, 12438-12448(2020).
[32] X. Song, G. Wang, W. Zhong, K. Guo, Z. Li, X. Liu, J. Dong, Q. Liu. Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration. Photoacoustics, 33, 100558(2023).
[33] S. Dey, S. Saha, B. T. Feng, M. Cui, L. Delisle, O. Leong, L. V. Wang, K. L. Bouman. Score-based diffusion models for photoacoustic tomography image reconstruction, 2470-2474.
[34] G. Wang, Y. Hu, G. Hu, H. Zhang, Q. Liu, X. Song. Generative model for sparse photoacoustic tomography artifact removal, 12-15.
[35] Z. Luo, F. K. Gustafsson, Z. Zhao, J. Sjölund, T. B. Schön. Image restoration with mean-reverting stochastic differential equations, 23045-23066.
[36] M. Chen, H. J. Knox, Y. Tang, W. Liu, L. Nie, J. Chan, J. Yao. Simultaneous photoacoustic imaging of intravascular and tissue oxygenation. Opt. Lett., 44, 3773-3776(2019).
[37] F. Feng, S. Liang, J. Luo, S. L. Chen. High-fidelity deconvolution for acoustic-resolution photoacoustic microscopy enabled by convolutional neural networks. Photoacoustics, 26, 100360(2022).
[38] B. E. Treeby, B. T. Cox. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt., 15, 021314(2010).
[39] Z. Luo, F. K. Gustafsson, Z. Zhao, J. Sjölund, T. B. Schön. Refusion: Enabling large-size realistic image restoration with latent-space diffusion models, 1680-1691.
[40] W. H. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 62, 55-59(1972).
[41] L. B. Lucy. An iterative technique for the rectification of observed distributions. Astrophys. J., 79, 745-754(1974).
[42] J. Y. Zhu, T. Park, P. Isola, A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2223-2232(2017).
[43] I. Loc, M. B. Unlu. Accelerating photoacoustic microscopy by reconstructing undersampled images using diffusion models. Sci. Rep., 14, 16996(2024).
[44] K. Guo, Z. Zheng, W. Zhong, Z. Li, G. Wang, J. Li, Y. Cao, Y. Wang, J. Lin, Q. Liu, X. Song. Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography. Photoacoustics, 38, 100623(2024).