• Acta Optica Sinica
  • Vol. 36, Issue 11, 1106002 (2016)
Han Jian1、2、*, Xiao Dong1、2, Ye Huiqi1、2, Wu Yuanjie1、2, and Xu Weijia3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201636.1106002 Cite this Article Set citation alerts
    Han Jian, Xiao Dong, Ye Huiqi, Wu Yuanjie, Xu Weijia. Scrambling Gain and Energy Variation of Sectional Fiber Transmission Systems[J]. Acta Optica Sinica, 2016, 36(11): 1106002 Copy Citation Text show less
    References

    [1] Halverson S, Roy A, Mahadevan S, et al. An efficient, compact, and versatile fiber double scrambler for high precision radial velocity instruments[J]. The Astrophysical Journal, 2015, 806: 61.

    [2] Barnes S I, MacQueen P J. A high-efficiency fibre double-scrambler prototype[C]. SPIE, 2010, 7735: 773567.

    [3] Spronck J F P, Fischer D A, Kaplan Z, et al. Fiber scrambling for high-resolution spectrographs. II. A double fiber scrambler for Keck observatory[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(956): 1027-1037.

    [4] Yan L S, Yao S X, Lin L, et al. Improved beam uniformity in multimode fibers using piezoelectric-based spatial mode scrambling for medical applications[J]. Optical Engineering, 2008, 47(9): 090502.

    [5] Mahadevan S, Halverson S, Ramsey L. et al. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources[J]. The Astrophysical Journal, 2014, 786 1.

    [6] Halverson S, Mahadevan S, Ramsey L, et al. The habitable-zone planet finder calibration system[C]. SPIE, 2014, 9147: 91477Z.

    [7] Spronck J F P, Fischer D A, Kaplan Z A. Use and limitations of single- and multi-mode optical fibers for exoplanet detection[M]. Vienna: InTech Open Access Publisher, 2012.

    [8] Spronck J F P, Kaplan Z A, Fischer D A, et al. Extreme Doppler precision with octagonal fiber scramblers[C]. SPIE, 2012, 8446: 84468T.

    [9] Feger T, Brucalassi A, Grupp F U, et al. A testbed for simultaneous measurement of fiber near and far-field for the evaluation of fiber scrambling properties[C]. SPIE, 2012, 8446: 844692.

    [10] Stürmer J, Stahl O, Schwab C, et al. CARMENES in SPIE 2014. Building a fibre link for CARMENES[C]. SPIE, 2014, 9151: 915152.

    [11] Bouchy F, Díaz R F, Hébrard G, et al. SOPHIE+: first results of an octagonal-section fiber for high-precision radial velocity measurements[J]. Astronomy & Astrophysics, 2012, 549: A49.

    [12] Plavchan P P, Bottom M, Gao P, et al. Precision near-infrared radial velocity instrumentation II: noncircular core fiber scrambler[C]. SPIE, 2013, 8864: 88640G.

    [13] Sablowski D P, Plüschke D, Weber M, et al. Comparing modal noise and FRD of circular and non-circular cross-section fibres[J]. Astronomische Nachrichten, 2015, 337(3): 216-225.

    [14] Yang Cong, Han Jian, Wu Yuanjie, et al. Theoretical and experimental study on suppression of speckle from a multimode optical fiber by dynamic scrambling[J]. Laser & Optoelectronics Progress, 2015, 52(9): 090602.

    [15] Wang Sen, Zhu Bing. Focal ratio degradation of large core spectrum light-transmitting optical fiber[J]. Opto-Electronic Engineering, 2011, 38(7): 17-24.

    [16] Liao Suying, Gong Mali. Analysis of mode evolution between straight and curved fiber transition in large mode area fibers[J]. Chinese J Lasers, 2013, 40(3): 0305006.

    [17] Han Jian, Xiao Dong. Near and far field scrambling properties of polygonal core optical fiber[J]. Acta Optica Sinica, 2016, 36(4): 0406003.

    Han Jian, Xiao Dong, Ye Huiqi, Wu Yuanjie, Xu Weijia. Scrambling Gain and Energy Variation of Sectional Fiber Transmission Systems[J]. Acta Optica Sinica, 2016, 36(11): 1106002
    Download Citation