• Chinese Journal of Lasers
  • Vol. 47, Issue 12, 1204003 (2020)
Gong Shuang1、2, Yang Baoxi1、2、*, and Huang Huijie1、2
Author Affiliations
  • 1Laboratory of Information Optics and Opto-Electronics Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202047.1204003 Cite this Article Set citation alerts
    Gong Shuang, Yang Baoxi, Huang Huijie. Effects of Mid-Spatial Frequency Surface Errors on the Illumination Field Uniformity of Off-Axis Illumination[J]. Chinese Journal of Lasers, 2020, 47(12): 1204003 Copy Citation Text show less
    References

    [1] Achilles K, Uhlendorf K, Ochse D. Tolerancing the impact of mid-spatial frequency surface errors of lenses on distortion and image homogeneity[J]. Proceedings of SPIE, 9626, 96260A(2015). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2191261

    [2] Tohme Y E. Grinding aspheric and freeform micro-optical molds[J]. Proceedings of SPIE, 6462, 64620K(2007). http://spie.org/Publications/Proceedings/Paper/10.1117/12.712706

    [3] Zeng X F, Zhang X J. Impact of mid-spatial frequency errors in optical manufacturing on modulation transfer function[J]. Laser & Optoelectronics Progress, 52, 072202(2015).

    [4] Youngworth R N, Stone B D. Simple estimates for the effects of mid-spatial-frequency surface errors on image quality[J]. Applied Optics, 39, 2198-2209(2000).

    [5] Tamkin J M, Dallas W J, Milster T D. Theory of point-spread function artifacts due to structured mid-spatial frequency surface errors[J]. Applied Optics, 49, 4814-4824(2010). http://www.opticsinfobase.org/abstract.cfm?uri=ao-49-25-4814

    [6] Tamkin J M, Milster T D. Effects of structured mid-spatial frequency surface errors on image performance[J]. Applied Optics, 49, 6522-6536(2010).

    [7] Yang W, Huang W, Xu W C et al. Analysis of mid-spatial frequency surface errors effects on local flare in lithographic projection lens[J]. Acta Optica Sinica, 33, 0922001(2013).

    [8] Zeng X, Feng Y, Zhang X. Effects of structured surface errors on MTF of off-axis TMA system[J]. Proceedings of SPIE, 8416, 84161B(2012).

    [9] Zhang W, Gong Y. Design of diffractive optical elements for off-axis illumination in projection lithography[J]. Optics and Precision Engineering, 16, 2081-2086(2008).

    [10] Hu Z H, Zhu J, Yang B X et al. Far-field multi-parameter measurement of diffractive optical element for pupil shaping in lithography system[J]. Chinese Journal of Lasers, 40, 0908001(2013).

    [11] Hu Z H, Yang B X, Zhu J et al. Pupil shaping techniques in high resolution projection exposure tools[J]. Laser & Optoelectronics Progress, 48, 111101(2011).

    [12] Cheng W L, Zhang F, Lin D L et al. High precision correction method of illumination field uniformity for photolithography illumination system[J]. Acta Optica Sinica, 38, 0722001(2018).

    [13] Goodman J W. Introduction to fourier optics[M]. New York: McGraw-Hill, 73-84(1995).

    [14] Gan Y, Zhang F, Zhu S Y et al. Evaluation algorithm of pupil characteristic parameters in lithography illumination system[J]. Chinese Journal of Lasers, 46, 0304007(2019).

    [15] Liu Z F, Chen M, Bu Y et al. Blade edge's penumbra measurement for scanning slit of lithographic tools[J]. Chinese Journal of Lasers, 46, 1004005(2019).

    Gong Shuang, Yang Baoxi, Huang Huijie. Effects of Mid-Spatial Frequency Surface Errors on the Illumination Field Uniformity of Off-Axis Illumination[J]. Chinese Journal of Lasers, 2020, 47(12): 1204003
    Download Citation