• High Power Laser and Particle Beams
  • Vol. 34, Issue 12, 122003 (2022)
Qiuyue Xu1, Jiaxin Zhou2, Lianqiang Shan1、*, Chao Tian1, Zuhua Yang1, Tiankui Zhang1, Weiwu Wang1, Jian Teng1, Zhigang Deng1, Zongqiang Yuan1, Feng Zhang1, Wei Qi1, Dongxiao Liu1, Quanping Fan1, Lai Wei1, Weimin Zhou1, and Yuqiu Gu1
Author Affiliations
  • 1Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • 2School of Physics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.11884/HPLPB202234.220199 Cite this Article
    Qiuyue Xu, Jiaxin Zhou, Lianqiang Shan, Chao Tian, Zuhua Yang, Tiankui Zhang, Weiwu Wang, Jian Teng, Zhigang Deng, Zongqiang Yuan, Feng Zhang, Wei Qi, Dongxiao Liu, Quanping Fan, Lai Wei, Weimin Zhou, Yuqiu Gu. Optimized simulation of D3He proton source for exploding pusher target[J]. High Power Laser and Particle Beams, 2022, 34(12): 122003 Copy Citation Text show less
    References

    [1] Li C K, Séguin F H, Rygg J R, et al. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion[J]. Physical Review Letters, 100, 225001(2008).

    [2] Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 85, 2945-2948(2000).

    [3] Zylstra A B, Li C K, Rinderknecht H G, et al. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions[J]. Review of Scientific Instruments, 83, 013511(2012).

    [4] Li C K, Séguin F H, Frenje J A, et al. Charged-particle probing of X-ray–driven inertial-fusion implosions[J]. Science, 327, 1231-1235(2010).

    [5] Craxton R S, Anderson K S, Boehly T R, et al. Direct-drive inertial confinement fusion: a review[J]. Physics of Plasmas, 22, 110501(2015).

    [6] Manuel M J E, Zylstra A B, Rinderknecht H G, et al. Source characterization and modeling development for monoenergetic-proton radiography experiments on OMEGA[J]. Review of Scientific Instruments, 83, 063506(2012).

    [7] Rygg J R, Zylstra A B, Séguin F H, et al. Note: a monoenergetic proton backlighter for the National Ignition Facility[J]. Review of Scientific Instruments, 86, 116104(2015).

    [8] Manuel M J E, Li C K, Séguin F H, et al. First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas[J]. Physical Review Letters, 108, 255006(2012).

    [9] Rigg P A, Schwartz C L, Hixson R S, et al. Proton radiography and accurate density measurements: a window into shock wave processes[J]. Physical Review B, 77, 220101(R)(2008).

    [10] Li C K, Séguin F H, Frenje J A, et al. Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas[J]. Physical Review Letters, 99, 055001(2007).

    [11] Frenje J A, Grabowski P E, Li C K, et al. Measurements of ion stopping around the Bragg peak in high-energy-density plasmas[J]. Physical Review Letters, 115, 205001(2015).

    [12] Zylstra A B, Frenje J A, Grabowski P E, et al. Measurement of charged-particle stopping in warm dense plasma[J]. Physical Review Letters, 114, 215002(2015).

    [13] Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2, 243-255(2017).

    [14] Séguin F H, Frenje J A, Li C K, et al. Spectrometry of charged particles from inertial-confinement-fusion plasmas[J]. Review of Scientific Instruments, 74, 975-995(2003).

    [15] Teng Jian, Zhao Zongqing, Ding Yongkun, . Simulation of D3He fusion monoenergetic proton radiography of ICF implosions[J]. High Power Laser and Particle Beams, 23, 137-140(2011).

    [16] MacFarlane J J, Golovkin I E, Woodruff P R. HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 99, 381-397(2006).

    [17] Miles A R, Chung H K, Heeter R, et al. Numerical simulation of thin-shell direct drive DHe3-filled capsules fielded at OMEGA[J]. Physics of Plasmas, 19, 072702(2012).

    [18] Rosenberg M J, Zylstra A B, Séguin F H, et al. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platform at the National Ignition Facility[J]. High Energy Density Physics, 18, 38-44(2016).

    [19] Zhang Jun, Jiang Ronghong, Zeng Xiancai. A theoretical model of exploding pusher targets[J]. Nuclear Fusion and Plasma Physics, 8, 207-211(1988).

    [20] Dodd E S, Benage J F, Kyrala G A, et al. The effects of laser absorption on direct-drive capsule experiments at OMEGA[J]. Physics of Plasmas, 19, 042703(2012).

    [21] Laffite S, Bourgade J L, Caillaud T, et al. Time history prediction of direct-drive implosions on the Omega facility[J]. Physics of Plasmas, 23, 012706(2016).

    [22] Richardson M C, Craxton R S, Delettrez J, et al. Absorption physics at 351 nm in spherical geometry[J]. Physical Review Letters, 54, 1656-1659(1985).

    [23] Stm E K, Larsen J T, Nuckolls J H, et al. Simple scaling model f exploding pusher targets[R]. UCRL79788, 1977.

    [24] Garban-Labaune C, Fabre E, Max C E, et al. Effect of laser wavelength and pulse duration on laser-light absorption and back reflection[J]. Physical Review Letters, 48, 1018-1021(1982).

    [25] Kitagawa Y, Miyanaga N, Kato Y, et al. Optimum design of exploding pusher target to produce maximum neutrons[J]. Japanese Journal of Applied Physics, 25, 586-589(1986).

    [26] Shan Lianqiang, Wu Fengjuan, Yuan Zongqiang, . Research progress of kinetic effects in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 33, 012004(2021).

    [27] Rinderknecht H G, Amendt P A, Wilks S C, et al. Kinetic physics in ICF: present understanding and future directions[J]. Plasma Physics and Controlled Fusion, 60, 064001(2018).

    [28] Hoffman N M, Zimmerman G B, Molvig K, et al. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions[J]. Physics of Plasmas, 22, 052707(2015).

    [29] Rosenberg M J, Rinderknecht H G, Hoffman N M, et al. Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions[J]. Physical Review Letters, 112, 185001(2014).

    [30] Rosenberg M J, Zylstra A B, Séguin F H, et al. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF[J]. Physics of Plasmas, 21, 122712(2014).

    [31] Rygg J R, Frenje J A, Li C K, et al. Observations of the collapse of asymmetrically driven convergent shocks[J]. Physics of Plasmas, 15, 034505(2008).

    [32] Johnson T M, Birkel A, Ramirez H E, et al. Yield degradation due to laser drive asymmetry in D3He backlit proton radiography experiments at OMEGA[J]. Review of Scientific Instruments, 92, 043551(2021).

    [33] Skupsky S, Marozas J A, Craxton R S, et al. Polar direct drive on the National Ignition Facility[J]. Physics of Plasmas, 11, 2763-2770(2004).

    [34] Tian Chao, Chen Jia, Zhang Bo, et al. High direct drive illumination uniformity achieved by multi-parameter optimization approach: a case study of Shenguang III laser facility[J]. Optics Express, 23, 12362-12372(2015).

    [35] Tian Chao, Shan Lianqiang, Zhou Weimin, . Optimization of illumination uniformity of Shenguang Ⅲ prototype facility and its potential application in fast ignition[J]. High Power Laser and Particle Beams, 27, 092010(2015).

    [36] Ramis R, Temporal M, Canaud B, et al. Three-dimensional symmetry analysis of a direct-drive irradiation scheme for the laser megajoule facility[J]. Physics of Plasmas, 21, 082710(2014).

    Qiuyue Xu, Jiaxin Zhou, Lianqiang Shan, Chao Tian, Zuhua Yang, Tiankui Zhang, Weiwu Wang, Jian Teng, Zhigang Deng, Zongqiang Yuan, Feng Zhang, Wei Qi, Dongxiao Liu, Quanping Fan, Lai Wei, Weimin Zhou, Yuqiu Gu. Optimized simulation of D3He proton source for exploding pusher target[J]. High Power Laser and Particle Beams, 2022, 34(12): 122003
    Download Citation