• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 2, 2150004 (2021)
Luguang Jiao*, Chao Wang, Kaizeng Zhang, Jiarui Wang, and Zaifu Yang
Author Affiliations
  • Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
  • show less
    DOI: 10.1142/s1793545821500048 Cite this Article
    Luguang Jiao, Chao Wang, Kaizeng Zhang, Jiarui Wang, Zaifu Yang. Corneal damage effects induced by infrared optical parametric oscillator radiation at 3743 nm[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 2150004 Copy Citation Text show less
    References

    [1] U. Willer, M. Saraji, A. Khorsandi, P. Geiser, W. Schade, "Near- and mid-infrared laser monitoring of industrial processes, environment and security applications," Opt. Lasers Eng. 44(7), 699–710 (2006).

    [2] M. Vainio, M. Siltanen, J. Peltola, L. Halonen, "Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy," Appl. Opt. 50(4), A1–A10 (2011).

    [3] R. Tuttle, "Large aircraft infrared countermeasures system," Aerosp. Daily Def. Rep. 210, 6–7 (2004).

    [4] L. Xu, H.-Y. Chan, S.-U. Alam, D. J. Richardson, D. P. Shepherd, "Fiber-laser-pumped, high-energy, mid-IR, picosecond optical parametric oscillator with a high-harmonic cavity," Opt. Lett. 40(14), 3288–3291 (2015).

    [5] J. B. Barria, S. Roux, J. B. Dherbecourt, M. Raybaut, J. M. Melkonian, A. Godard, M. Lefebvre, "Microsecond fiber laser pumped, single- frequency optical parametric oscillator for trace gas detection," Opt. Lett. 38(13), 2165–2167 (2013).

    [6] E. Lippert, H. Fonnum, G. Arisholm, K. Stenersen, "A 22-watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator," Opt. Express 18(25), 26475–26483 (2010).

    [7] A. Hemming, J. Richards, S. Bennetts, "A high power hybrid mid-IR laser source," Opt. Commun. 283(20), 4041–4045 (2010).

    [8] A. Hmming, J. Richards, A. Davidson, N. Carmody, S. Bennetts, N. Simakov, J. Haub, "99 W mid-IR operation of a ZGP OPO at 25% duty cycle," Opt. Express 21(8), 10062–10069 (2013).

    [9] B. Q. Yao, Y. J. Shen, X. M. Duan, T. Y. Dai, Y. L. Ju, Y. Z. Wang, "A 41-W ZnGeP2 optical parametric oscillator pumped by a Q-switched Ho: YAG laser," Opt. Lett. 39(23), 6589–6592 (2014).

    [10] P. Gross, M. E. Klein, T. Walde, K. J. Boller, M. Auerbach, P. Wessels, C. Fallnich, "Fiber-laserpumped continuous-wave singly resonant optical parametric oscillator," Opt. Lett. 27(6), 418–420 (2002).

    [11] A. Henderson, R. Stafford, "Low threshold, singlyresonant CW OPO pumped by an all-fiber pump source," Opt. Express 14(2), 767–772 (2006).

    [12] M. Vainio, J. Peltola, S. Persijn, F. J. Harren, L. Halonen, "Singly resonant CW OPO with simple wavelength tuning," Opt. Express 16(15), 11141– 11146 (2008).

    [13] V. Ramaiahbadarla, S. C. Kumar, M. Ebrahimzadeh, "Fiber-laser-pumped, dual-wavelength, picosecond optical parametric oscillator," Opt. Lett. 39(9), 2739–2742 (2014).

    [14] K. S. Chaitanya, J. Wei, J. Debray, V. Kemlin, B. Boulanger, H. Ishizuki, T. Taira, M. Ebrahim- Zadeh, "High-power, widely tunable, room-temperature picosecond optical parametric oscillator based on cylindrical 5% MgO: PPLN," Opt. Lett. 40(16), 3897–3900 (2015).

    [15] X. Li, X. J. Xu, Y. P. Shang, H. Y. Wang, L. Liu, "Study on high-power continuous-wave mid-infrared optical parametric oscillator," Proc. SPIE 9251, 92510A1–4 (2014).

    [16] International Commission on Non-Ionizing Radiation Protection, "Guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 _m," Health Phys. 105(3), 271–295 (2013).

    [17] M. J. C. Van Gemert, P. R. Bloemen, W. Y. Wang, C. W. M. van der Geld, R. M. M. A. Nuijts, H. Hortoglu, A. Wolkerstorfer, D. M. de Bruin, T. G. van Leeuwen, H. A. M. Neumann, M. J. Jager, "Periocular CO2 laser resurfacing: Severe ocular complications from multiple unintentional laser impacts on the protective metal eye shields," Lasers Surg. Med. 50(10), 980–986 (2018).

    [18] B. S. Fine, S. Fine, G. R. Peacock, W. J. Geeraets, E. Klein, "Preliminary observations on ocular effects of high-power, continuous CO2 laser radiation," Am. J. Ophthalmol. 64(2), 209–222 (1967).

    [19] K. Gullberg, B. Hartmann, E. Koch, B. Tengroth, "Carbon dioxide laser hazards to the eye," Nature 215(5103), 857–858 (1967).

    [20] B. S. Fine, S. Fine, L. Feigen, D. MacKeen, "Corneal injury threshold to carbon dioxide laser radiation," Am. J. Ophthalmol. 66(1), 1–14 (1968).

    [21] R. R. Peabody, H. C. Zweng, H. W. Rose, N. A. Peppers, A. Vassiliadis, "Threshold damage from CO2 lasers," Arch. Ophthalmol. 82(1), 105–107 (1969).

    [22] N. A. Peppers, A. Vassiliadis, K. G. Dedrick, H. Chang, R. R. Peabody, H. Rose, H. C. Zweng, "Corneal damage thresholds for CO2 laser radiation," Appl. Opt. 8(2), 377–381 (1969).

    [23] H. M. Leibowitz, G. R. Peacock, "Corneal injury produced by carbon dioxide laser radiation," Arch. Ophthalmol. 81(5), 713–721 (1969).

    [24] R. G. Borland, D. H. Brennan, A. N. Nicholson, "Threshold levels for damage of the cornea following irradiation by a continuous wave carbon dioxide (10.6 _m) laser," Nature 234(5325), 151–152 (1971).

    [25] C. B. Bargeron, R. A. Farrell, W. R. Green, R. L. McCally, "Corneal damage from exposure to IR radiation: Rabbit endothelial damage thresholds," Health Phys. 40(6), 855–862 (1981).

    [26] C. B. Bargeron, R. L. McCally, R. A. Farrell, "Calculated and measured endothelial temperature histories of excised rabbit corneas exposed to infrared radiation," Exp. Eye Res. 32(2), 241–250 (1981).

    [27] R. L. McCally, C. B. Bargeron, W. R. Green, R. A. Farrell, "Stromal damage in rabbit corneas exposed to CO2 laser radiation," Exp. Eye Res. 37(6), 543– 550 (1983).

    [28] J. A. Zuclich, M. F. Blankenstein, S. J. Thomas, R. F. Harrison, "Corneal damage induced by pulsed CO2 laser radiation," Health Phys. 47(6), 829–835 (1984).

    [29] C. B. Bargeron, O. J. Deters, R. A. Farrell, R. L. McCally, "Epithelial damage in rabbit corneas exposed to CO2 laser radiation," Health Phys. 56(1), 85–95 (1989).

    [30] R. L. McCally, C. B. Bargeron, "Epithelial damage thresholds for sequences of 80 ns pulses of 10.6 _mlaser radiation," J. Laser Appl. 10(3), 137–139 (1998).

    [31] R. L. McCally, C. B. Bargeron, "Epithelial damage thresholds for multiple-pulse exposures to 80 ns pulses of CO2 laser radiation," Health Phys. 80(1), 41–46 (2001).

    [32] R. L. McCally, R. A. Farrell, C. B. Bargeron, "Cornea epithelial damage thresholds in rabbits exposed to Tm: YAG laser radiation at 2.02 _m," Lasers Surg. Med. 12(6), 598–603 (1992).

    [33] R. L. McCally, C. B. Bargeron, "Corneal epithelial injury thresholds for multiple-pulse exposures to Tm: YAG laser radiation at 2.02 _m," Health Phys. 85(4), 420–427 (2003).

    [34] B. Chen, J. Oliver, S. Dutta, G. H. Rylander III, S. L. Thomsen, A. J. Welch, "Corneal minimal visible lesion thresholds for 2.0 _m laser radiation," J. Opt. Soc. Am. A 24(10), 3080–3088 (2007).

    [35] D. J. Lund, M. B. Landers, G. H. Bresnick, J. O. Powell, J. E. Chester, C. Carver, "Ocular hazards of the Q-switched erbium laser," Invest. Ophthalmol. 9(6), 463–470 (1970).

    [36] W. T. Ham, H. A. Mueller, "Ocular effects of laser infrared radiation," J. Laser Appl. 3(3), 19–21 (1991).

    [37] B. E. Stuck, D. J. Lund, E. S. Beatrice, "Ocular effects of holmium (2.06 _m) and erbium (1.54 _m) laser radiation," Health Phys. 40(6), 835–846 (1981).

    [38] T. F. Clarke, T. E. Johnson, M. B. Burton, B. Ketzenberger, W. P. Roach, "Corneal injury threshold in rabbits for the 1540 nm infrared laser," Aviat. Space Environ. Med. 73(8), 787–790 (2002).

    [39] R. L. McCally, J. Bonney-Ray, C. B. Bargeron, "Corneal injury thresholds for exposures to 1.54 _m radiation—dependence on beam diameter," Health Phys. 87(6), 16–24 (2004).

    [40] R. L. McCally, J. Bonney-Ray, Z. de la Cruz, W. R. Green, "Corneal endothelial injury thresholds for exposures to 1.54 _m radiation," Health Phys. 92(3), 205–211 (2007).

    [41] N. A. McPherson, T. E. Eurell, T. E. Johnson, "Comparison of 1540-nm laser-induced injuries in ex vivo and in vitro rabbit corneal models," J. Biomed. Opt. 12(6), 064033 (2007).

    [42] ANSI, American National Standard for Safety Use of Lasers, Z136.1, Laser Institute of America, Orlando, Florida (2014).

    [43] IEC, Safety of Laser Products-Part 1: Equipment Classification and Requirements, 3rd Edition, International Electrotechnical Commission, Geneva, Switzerland (2014).

    [44] L. G. Jiao, J. R. Wang, X. M. Jing, H. X. Chen, Z. F. Yang, "Ocular damage effects from 1338-nm pulsed laser radiation in a rabbit eye model," Biomed. Opt. Express 8(5), 2745–2755 (2017).

    [45] J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, D. J. Lund, "Ocular effects of penetrating IR laser wavelengths," Proc. SPIE 2391, 112–125 (1995).

    [46] K. Schulmeister, J. Husinsky, B. Seiser, F. Edthofer, B. Fekete, L. Farmer, D. J. Lund, "Ex vivo and computer model study on retinal thermal laser-induced damage in the visible wavelength range," J. Biomed. Opt. 13(5), 054038 (2008).

    [47] K. Schulmeister, R. Ullah, M. Jean, "Near infrared ex-vivo bovine and computer model thresholds for laser-induced retinal damage," Photonics Lasers Med. 1(2), 123–131 (2012).

    [48] K. Schulmeister, M. Jean, D. J. Lund, B. E. Stuck, Comparison of corneal injury thresholds with laser safety limits, Int. Laser Safety Conf., Vol. 303, FL, USA, pp. 102–110 (2019).

    [49] I. L. Dunsky, D. E. Egbert, Corneal damage thresholds for hydrogen fluoride and deuterium fluoride chemical lasers, SAM-TR-73-51 (USAF School of Aerospace Medicine, Aerospace Medical Division, Brooks Air Force Base, 1973).

    Luguang Jiao, Chao Wang, Kaizeng Zhang, Jiarui Wang, Zaifu Yang. Corneal damage effects induced by infrared optical parametric oscillator radiation at 3743 nm[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 2150004
    Download Citation