• Chinese Journal of Lasers
  • Vol. 50, Issue 4, 0402019 (2023)
Ronggui Lu1、2, Xinyue Zhang1、2, Xu Cheng1、2、3、*, Jia Li1、4, Dong Liu1、4, Yudai Wang1、2、3, and Yiwei Liu5
Author Affiliations
  • 1National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, Beijing 100191, China
  • 2School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • 3Research Institute for Frontier Science, Beihang University, Beijing 100191, China
  • 4Beijing Yuding Advanced Materials & Manufacturing Technologies Co, Ltd., Beijing 100096, China
  • 5No.1 Military Representative Office of Air Force Equipment Department Stationed in Shenyang, Shenyang 110148, Liaoning , China
  • show less
    DOI: 10.3788/CJL202350 Cite this Article Set citation alerts
    Ronggui Lu, Xinyue Zhang, Xu Cheng, Jia Li, Dong Liu, Yudai Wang, Yiwei Liu. Microstructure Formation and Evolution Mechanism of Laser Rapid Melted Nickel Based Alloy Based on Composition Gradient[J]. Chinese Journal of Lasers, 2023, 50(4): 0402019 Copy Citation Text show less
    References

    [1] Wang H Y, An Y Q, Li C Y et al. Research progress of Ni-based superalloys[J]. Materials Review, 25, 482-486(2011).

    [2] Cumpsty N[M]. Jet propulsion(1997).

    [3] Chen H M, Hu B F, Zhang Y W et al. Recent development in nickel-based powder superalloy used in aircraft turbines[J]. Materials Review, 16, 17-19(2002).

    [4] Jiang H F. Requirements and forecast of turbine disk materials[J]. Gas Turbine Experiment and Research, 15, 1-6(2002).

    [5] Pan A Q, Zhang H, Wang Z M. Process parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102007(2019).

    [6] Zhang Y W, Liu J T. Development in powder metallurgy superalloy[J]. Materials China, 32, 1-11, 38(2013).

    [7] Wen T J, Wang H W, Liang P. Failure analysis on turbine blade tenon crack for a certain type of aero-engine[J]. Aviation Maintenance & Engineering, 88-91(2020).

    [8] Liang T S, Wang L, Liu Y et al. Microstructure and mechanical properties of laser welded joints of DZ125L and IN718 nickel base superalloys[J]. Metals and Materials International, 24, 604-615(2018).

    [9] Xiao L Y. Research on process and mechanism of TLP bonded IC10 single crystal superalloy[D](2018).

    [10] Zhong Z, Wu L Z, Chen W Q. Progress in the study on mechanics problems of functionally graded materials and structures[J]. Advances in Mechanics, 40, 528-541(2010).

    [11] Huang J X, Sun Z G, Chang H et al. Compositional changes and microstructure evolution of Ti6Al4V-Inconel718 functionally graded materials by laser additive manufacturing[J]. Rare Metal Materials and Engineering, 49, 2813-2819(2020).

    [12] Lin X, Yue T M, Yang H O et al. Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy[J]. Metallurgical and Materials Transactions A, 38, 127-137(2007).

    [13] Liu N. Study on process and properties of NiCrAlY/Al2O3 functionally graded materials via direct laser deposition[D](2019).

    [14] Shah K, Haq I U, Khan A et al. Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition[J]. Materials & Design, 54, 531-538(2014).

    [15] Carroll B E, Otis R A, Borgonia J P et al. Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modeling[J]. Acta Materialia, 108, 46-54(2016).

    [16] Ji X, Sun Z G, Chang L L et al. Microstructure evolution behavior in laser melting deposition of Ti6Al4V/Inconel625 gradient high-temperature resistant coating[J]. Chinese Journal of Lasers, 46, 1102008(2019).

    [17] Yu M J, Wu C M, Feng A X et al. Microstructure and mechanical properties of 316L-IN625 gradient material prepared via laser deposition[J]. Chinese Journal of Lasers, 49, 0802007(2022).

    [18] Bobbio L D, Otis R A, Borgonia J P et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to invar: experimental characterization and thermodynamic calculations[J]. Acta Materialia, 127, 133-142(2017).

    [19] Onuike B, Bandyopadhyay A. Additive manufacturing of Inconel 718-Ti6Al4V bimetallic structures[J]. Additive Manufacturing, 22, 844-851(2018).

    [20] Qian T T, Liu D, Tian X J et al. Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process[J]. Transactions of Nonferrous Metals Society of China, 24, 2729-2736(2014).

    [21] Liu Y, Liang C P, Liu W S et al. Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure[J]. Journal of Alloys and Compounds, 763, 376-383(2018).

    [22] Duan G, Zhao H Y, Wang H M. Microstructure of laser melted/rapidly solidified γ/Cr3Si metal silicide “in-situ” composite[J]. Rare Metal Materials and Engineering, 32, 121-125(2003).

    [23] Pope D P, Ezz S S. Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of γ'[J]. International Metals Reviews, 29, 136-167(1984).

    [24] van Sluytman J S, Pollock T M. Optimal precipitate shapes in nickel-base γ-γ' alloys[J]. Acta Materialia, 60, 1771-1783(2012).

    [25] Liu F C, Mao Y Q, Lin X et al. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding[J]. Optics & Laser Technology, 83, 140-147(2016).

    [26] Liu H Q, Guo K, Sun J et al. Effect of Nb addition on the microstructure and mechanical properties of Inconel 718 fabricated by laser directed energy deposition[J]. Materials Characterization, 183, 111601(2022).

    [27] Nash P[M]. Phase diagrams of binary nickel alloys(1991).

    [28] Masoumi F, Jahazi M, Shahriari D et al. Coarsening and dissolution of γ' precipitates during solution treatment of AD730™ Ni-based superalloy: mechanisms and kinetics models[J]. Journal of Alloys and Compounds, 658, 981-995(2016).

    [29] Heckl A, Rettig R, Cenanovic S et al. Investigation of the final stages of solidification and eutectic phase formation in Re and Ru containing nickel-base superalloys[J]. Journal of Crystal Growth, 312, 2137-2144(2010).

    [30] D’Souza N, Dong H B. Solidification path in third-generation Ni-based superalloys, with an emphasis on last stage solidification[J]. Scripta Materialia, 56, 41-44(2007).

    [31] Neumeier S, Dinkel M, Pyczak F et al. Nanoindentation and XRD investigations of single crystalline Ni-Ge brazed nickel-base superalloys PWA 1483 and René N5[J]. Materials Science and Engineering: A, 528, 815-822(2011).

    Ronggui Lu, Xinyue Zhang, Xu Cheng, Jia Li, Dong Liu, Yudai Wang, Yiwei Liu. Microstructure Formation and Evolution Mechanism of Laser Rapid Melted Nickel Based Alloy Based on Composition Gradient[J]. Chinese Journal of Lasers, 2023, 50(4): 0402019
    Download Citation