• International Journal of Extreme Manufacturing
  • Vol. 2, Issue 3, 32005 (2020)
Marcus Kaestner and Ivo W Rangelow*
Author Affiliations
  • Institute of Micro- and Nanoelectronics, Nanoscale Systems Group, Faculty of Electrical Engineering and Information Technology, Ilmenau University of Technology, Gustav-Kirchhoff-Str. 1, 98693 Ilmenau, Germany
  • show less
    DOI: 10.1088/2631-7990/aba2d8 Cite this Article
    Marcus Kaestner, Ivo W Rangelow. Scanning probe lithography on calixarene towards single-digit nanometer fabrication[J]. International Journal of Extreme Manufacturing, 2020, 2(3): 32005 Copy Citation Text show less
    References

    [1] Prati E and Shinada T 2013 Single-Atom Nanoelectronics (Singapore: Pan Stanford)

    [2] Müller M, Fiedler T, Gr?ger R, Koch T, Walheim S, Obermair C and Schimmel T 2004 Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching Surf. Interface Anal. 36 189–92

    [3] Liu M Z, Amro N A and Liu G Y 2008 Nanografting for surface physical chemistry Annu. Rev. Phys. Chem. 59 367–86

    [4] Mamin H J and Rugar D 1992 Thermomechanical writing with an atomic force microscope tip Appl. Phys. Lett. 61 1003–5

    [5] Fenwick O, Bozec L, Credgington D, Hammiche A, Lazzerini G M, Silberberg Y R and Cacialli F 2009 Thermochemical nanopatterning of organic semiconductors Nat. Nanotechnol. 4 664–8

    [6] Torrey J D, Vasko S E, Kapetanovic A, Zhu Z H, Scholl A and Rolandi M 2010 Scanning probe direct-write of germanium nanostructures Adv. Mater. 22 4639–42

    [7] Jegadesan S, Sindhu S and Valiyaveettil S 2006 Easy writing of nanopatterns on a polymer film using electrostatic nanolithography Small 2 481–4

    [8] Marrian C R K, Dobisz E A and Dagata J A 1992 Electron-beam lithography with the scanning tunneling microscope J. Vac. Sci. Technol. B 10 2877–81

    [9] Park J, Park J Y, Choi T and Seo Y 2011 Graphite patterning in a controlled gas environment Nanotechnology 22 335304

    [10] Rangelow I W, Ivanov T, Sarov Y, Schuh A, Frank A, Hartmann H, Z?llner J P, Olynick D L and Kalchenko V 2010 Nanoprobe maskless lithography. Proc. SPIE 7637 76370V

    [11] Anderson E H, Olynick D L, Chao W L, Harteneck B and Veklerov E 2001 Influence of sub-100 nm scattering on high-energy electron beam lithography J. Vac. Sci. Technol. B 19 2504–7

    [12] Marrian C R K and Tennant D M 2003 Nanofabrication J. Vac. Sci. Technol. A 21 S207–15

    [13] Cord B, Yang J, Duan H G, Joy D C, Klingfus J and Berggren K K 2009 Limiting factors in sub-10 nm scanning-electron-beam lithography J. Vac. Sci. Technol. B 27 2616–21

    [14] Grigorescu A E and Hagen C W 2009 Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art Nanotechnology 20 292001

    [15] Walz M M, Vollnhals F, Rietzler F, Schirmer M, Steinruck H P and Marbach H 2012 Investigation of proximity effects in electron microscopy and lithography Appl. Phys. Lett. 100 053118

    [16] Manfrinato V R, Zhang L H, Su D, Duan H G, Hobbs R G, Stach E A and Berggren K K 2013 Resolution limits of electron-beam lithography toward the atomic scale Nano Lett. 13 1555–8

    [17] Manfrinato V R et al 2014 Determining the resolution limits of electron-beam lithography: direct measurement of the point-spread function Nano Lett. 14 4406–12

    [18] Manfrinato V R, Cheong L L, Duan H G, Winston D, Smith H I and Berggren K K 2011 Sub-5 keV electron-beam lithography in hydrogen silsesquioxane resist Microelectron. Eng. 88 3070–4

    [19] Greeneich J S 1980 Electron-beam processes Electron-Beam Technology in Microelectronic Fabrication ed G R Brewer (New York: Academic) pp 59–140

    [20] Joy D C 1983 The spatial resolution limit of electron lithography Microelectron. Eng. 1 103–19

    [21] Schock K D, Prins F E, Str¨ahle S and Kern D P 1997 Resist processes for low-energy electron-beam lithography J. Vac. Sci. Technol. B 15 2323–6

    [22] Wu B and Neureuther A R 2001 Energy deposition and transfer in electron-beam lithography J. Vac. Sci. Technol. B 19 2508–11

    [23] Joy D C 1995 A database on electron-solid interactions Scanning 17 270–5

    [24] De Vera P, Abril I and Garcia-Molina R 2011 Inelastic scattering of electron and light ion beams in organic polymers J. Appl. Phys. 109 094901

    [25] Tilke A, Vogel M, Simmel F, Kriele A, Blick R H, Lorenz H, Wharam D A and Kotthaus J P 1999 Low-energy electron-beam lithography using calixarene J. Vac. Sci. Technol. B 17 1594–7

    [26] Shirota Y 2005 Photo- and electroactive amorphous molecular materials - molecular design, syntheses, reactions, properties, and applications J. Mater. Chem. 15 75–93

    [27] Dai J Y, Chang S W, Hamad A, Yang D, Felix N and Ober C K 2006 Molecular glass resists for high-resolution patterning Chem. Mater. 18 3404–11

    [28] Fujita J, Ohnishi Y, Ochiai Y, Nomura E and Matsui S 1996 Nanometer-scale resolution of calixarene negative resist in electron beam lithography J. Vac. Sci. Technol. B 14 4272–6

    [29] Ishida M, J I F, Ogura T, Ochiai Y, Ohshima E and Momoda J 2003 Sub-10-nm-scale lithography using p-chloromethyl-methoxy-calix[4]arene resist Jpn. J. Appl. Phys. 42 3913–6

    [30] Solak H H, Ekinci Y, Kaser P and Park S 2007 Photon-beam lithography reaches 12.5 nm half-pitch resolution J. Vac. Sci. Technol. B 25 91–95

    [31] Ohnishi Y, Fujita J, Ochiai Y and S M 1997 Calixarenesprospective materials for nanofabrication Microelectron. Eng. 35 117–20

    [32] Charlesby A 1960 Atomic Radiation and Polymers (Oxford: Pergamon)

    [33] Perkins F K, Dobisz E A and Marrian C R K 1993 Determination of acid diffusion rate in a chemically amplified resist with scanning tunneling microscope lithography J. Vac. Sci. Technol. B 11 2597–602

    [34] Wilder K, Quate C F, Adderton D, Bernstein R and Elings V 1998 Noncontact nanolithography using the atomic force microscope Appl. Phys. Lett. 73 2527–9

    [35] Wilder K, Quate C F, Singh B and Kyser D F 1998 Electron beam and scanning probe lithography: a comparison J. Vac. Sci. Technol. B 16 3864–73

    [36] Ruderisch A 2003 Synthese Von Calixaren- Und Resorcinarenderivaten Und Deren Anwendung in Chromatographie Und Nanotechnologie (Tübingen: Eberhard-Karls-Universit¨at Tübingen)

    [37] Sailer H 2007 Evaluierung Hochaufl?sender, Nicht Polymerer Elektronenstrahllacke Auf Calixaren–Basis (Tübingen: Universitaet Tübingen)

    [38] Prins F E, Pfeiffer J, Raible S, Kern D P and Schurig V 1998 Systematic studies of functionalized calixarenes as negative tone electron beam Microelectron. Eng. 41–2 359–62

    [39] De Oteyza D G, Perera P N, Schmidt M, Falch M, Dhuey S D, Harteneck B D, Schwartzberg A M, Schuck P J, Cabrini S and Olynick D L 2012 Sub-20 nm laser ablation for lithographic dry development Nanotechnology 23 185301

    [40] Perera P N, Schwartzberg A M, De Oteyza D G, Dhuey S D, Harteneck B D, Cabrini S and Olynick D L 2012 Selective laser ablation of radiation exposed methyl acetoxy calix(6)arene J. Vac. Sci. Technol. B 30 06FI02

    [41] Vorbringer-Doroshovets N et al 2013 0.1-nanometer resolution positioning stage for sub-10 nm scanning probe lithography Proc. SPIE 8680 868018

    [42] Kaestner M et al 2014 Scanning probes in nanostructure fabrication J. Vac. Sci. Technol. B 32 06F101

    [43] Heidenreich R D, Thompson L F, Feit E D and Melliar-Smith C M 1973 Fundamental aspects of electron beam lithography. I. Depth-dose response of polymeric electron beam resists J. Appl. Phys. 44 4039–47

    [44] Thompson L F, Feit E D, Melliar-Smith C M and Heidenreich R D 1973 Fundamental aspects of electron beam lithography. II. Low-voltage exposure of negative resists J. Appl. Phys. 44 4048–51

    [45] Vriens L 1966 Binary-encounter electron-atom collision theory Phys. Rev. 141 88–92

    [46] Vriens L 1966 Electron exchange in binary encounter collision theory Proc. Phys. Soc. 89 13–21

    [47] Kanik I, Trajmar S and Nickel J C 1992 Total cross section measurements for electron scattering on CH4 from 4 to 300 eV Chem. Phys. Lett. 193 281–6

    [48] Giordan J C, Moore J H and Tossell J A 1986 Anion states of organometallic molecules and their ligands Acc. Chem. Res. 19 281–6

    [49] Kim Y K et al Electron-impact cross sections for ionization and excitation database (http://www.nist.gov/pml/data/ ionization/index.cfm)

    [50] Tanuma S, Powell C J and Penn D R 1990 Electron inelastic mean free paths in solids at low energies J. Electron. Spectrosc. Relat. Phenom. 52 285–91

    [51] Tanuma S, Powell C J and Penn D R 1992 Inelastic mean free paths of low-energy electrons in solids Acta Phys. Pol. A 81 169–86

    [52] Michaud M, Wen A and Sanche L 2003 Cross sections for low-energy (1-100 eV) electron elastic and inelastic scattering in amorphous ice Radiat. Res. 159 3–22

    [53] Ma?ín Z, Gorfinkiel J D, Jones D B, Bellm S M and Brunger M J 2012 Elastic and inelastic cross sections for low-energy electron collisions with pyrimidine J. Chem. Phys. 136 144310

    [54] Chang T H P, Kern D P and Muray L P 1992 Arrayed miniature electron beam columns for high throughput sub-100 Nm lithography J. Vac. Sci. Technol. B 10 2743–8

    [55] Silver C S, Spallas J P and Muray L P 2007 Multiple beam sub-80-nm lithography with miniature electron beam column arrays J. Vac. Sci. Technol. B 25 2258–65

    [56] Hordon L S, Huang Z R, Maluf N, Browning R and Pease R F W 1993 Limits of low-energy electron optics J. Vac. Sci. Technol. B 11 2299–303

    [57] Rangelow I W 2006 Scanning proximity probes for nanoscience and nanofabrication Microelectron. Eng. 83 1449–55

    [58] Rangelow I W, Ivanov T, Ahmad A, Kaestner M, Lenk C, Bozchalooi I S, Xia F Z, Youcef-Toumi K, Holz M and Reum A 2017 Review article: active scanning probes: a versatile toolkit for fast imaging and emerging nanofabrication J. Vac. Sci. Technol. B 35 06G101

    [59] Kaestner M et al 2015 Advanced electric-field scanning probe lithography on molecular resist using active cantilever J. Micro/Nanolith. MEMS MOEMS 14 031202

    [60] Fowler R H and Nordheim L 1928 Electron emission in intense electric fields Proc. R. Soc. A 119 173–81

    [61] Young R, Ward J and Scire F 1972 The topografiner: an instrument for measuring surface microtopography Rev. Sci. Instrum. 43 999–1011

    [62] Kragler K 1997 Rastersondenlithographie Mit Niederenergetischen Elektronen (Nürnberg: Friedrich-Alexander-Universit¨at Erlangen-Nürnberg)

    [63] Olynick D L et al 2015 Selective laser ablation in resists and block copolymers for high resolution lithographic patterning J. Photopolym. Sci. Technol. 28 663–8

    [64] Angelov T et al 2016 Six-axis AFM in SEM with self-sensing and self-transduced cantilever for high speed analysis and nanolithography J. Vac. Sci. Technol. B 34 06KB01

    [65] Wilson H A 1923 The motion of electrons in gases Proc. R. Soc. A 103 53–57

    [66] Kapzow N A 1955 Elektrische Vorg¨ange in Gasen Und Im Vakuum (Berlin: VEB Deutscher Verlag der Wissenschaften)

    [67] Seah M P and Dench W A 1979 Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids Surf. Interface Anal. 1 2–11

    [68] Torok J et al 2013 Secondary electrons in EUV lithography J. Photopolym. Sci. Technol. 26 625–34

    [69] Denbeaux G et al 2013 Measurement of the role of secondary electrons in EUV resist exposures Proc. Int. Workshop on EUV Lithography (https://www.euvlitho.com/2013/ P29.PDF)

    [70] Marrian C R K, Dobisz E A and Colton R J 1990 Lithographic studies of an e-beam resist in a vacuum scanning tunneling microscope J. Vac. Sci. Technol. A 8 3563–9

    [71] Marrian C R K and Colton R J 1990 Low-voltage electron beam lithography with a scanning tunneling microscope Appl. Phys. Lett. 56 755–7

    [72] Dobisz E A, Marrian C R K and Colton R J 1990 Lithography with a 50 KV e beam and a vacuum scanning tunneling microscope in a polydiacetylene negative resist J. Vac. Sci. Technol. B 8 1754–8

    [73] Zhang L B, Shi J X, Yuan J L, Chang M and Wang X H 2003 The overview of scanning probe lithography by electron beam exposure of organic resists Proc. 2003 3rd IEEE Conf. on Nanotechnology (San Francisco, CA: IEEE) pp 797–800

    [74] Lyuksyutov S F, Paramonov P B, Sharipov R A and Sigalov G 2004 Induced nanoscale deformations in polymers using atomic force microscopy Phys. Rev. B 70 174110

    [75] Ohto M, Yamaguchi S and Tanaka K 1995 Migration of metals on graphite in scanning tunneling microscopy Japan. J. Appl. Phys. 34 L694–7

    [76] Leuschner R, Günther E, Falk G, Hammerschmidt A, Kragler K, Rangelow I W and Zimmermann J 1996 Bilayer resist process for exposure with low-voltage electrons (STM-lithography) Microelectron. Eng 30 447–50

    [77] Lenk C et al 2018 Experimental study of field emission from ultrasharp silicon, diamond, GaN, and tungsten tips in close proximity to the counter electrode J. Vac. Sci. Technol. B 36 06JL03

    [78] Kondo S, Heike S, Lutwyche M and Wada Y 1995 Surface modification mechanism of materials with scanning tunneling microscope J. Appl. Phys. 78 155–60

    [79] Kaestner M and Rangelow I W 2011 Scanning proximal probe lithography for sub-10 nm resolution on calix[4]resorcinarene J. Vac. Sci. Technol. B 29 06FD02

    [80] Krivoshapkina Y, Kaestner M, Lenk C, Lenk S and Rangelow I W 2017 Low-energy electron exposure of ultrathin polymer films with scanning probe lithography Microelectron. Eng. 177 78–86

    [81] Lyuksyutov S F, Vaia R A, Paramonov P B, Juhl S, Waterhouse L, Ralich R M, Sigalov G and Sancaktar E 2003 Electrostatic nanolithography in polymers using atomic force microscopy Nat. Mater. 2 468–72

    [82] Rangelow I W et al 2018 Atomic force microscope integrated with a scanning electron microscope for correlative nanofabrication and microscopy J. Vac. Sci. Technol. B 36 06J102

    [83] Holz M, Reuter C, Reum A, Ahmad A, Hofmann M, Ivanov T, Mechold S and Rangelow I W 2019 Atomic force microscope integrated into a scanning electron microscope for fabrication and metrology at the nanometer scale Proc. SPIE 11148 111481F

    [84] Holz M, Reuter C, Ahmad A, Reum A, Hofmann M, Ivanov T and Rangelow I W 2019 Correlative microscopy and nanofabrication with AFM integrated with SEM Microsc. Today 27 24–30

    [85] Holz M, F I A, Reuter C, Ahmad A, Hofmann M, Reum A, Ivanov T and Rangelow I W 2019 Tip-based electron beam induced deposition using active cantilevers J. Vac. Sci. Technol. B 37 061812

    [86] Rangelow I W et al 2016 Pattern-generation and pattern-transfer for single-digit Nano devices J. Vac. Sci. Technol. B 34 06K202

    [87] Durrani Z, Jones M, Abualnaja F, Wang C, Kaestner M, Lenk S, Lenk C, Rangelow I W and Andreev A 2018 Room-temperature single dopant atom quantum dot transistors in silicon, formed by field-emission scanning probe lithography J. Appl. Phys. 124 144502

    [88] Kaestner M, Hofer M and I W R 2013 Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography J. Micro/Nanolith. MEMS MOEMS 12 031111

    [89] Kaestner M and I W R 2012 Multi-step scanning probe lithography (SPL) on calixarene with overlay alignment Proc. SPIE 8323 83231G

    [90] Tennant D M 1999 Limits of conventional lithography Nanotechnology ed G Timp (Berlin: Springer) pp 161–205

    [91] Lenk C et al 2019 High-throughput process chain for single electron transistor devices based on field-emission scanning probe lithography and Smart Nanoimprint lithography technology J. Vac. Sci. Technol. B 37 021603

    [92] Rangelow I W et al 2017 Single Nano-digit and closed-loop scanning probe lithography for manufacturing of electronic and optical nanodevices Proc. SPIE 10456 1045621

    [93] Rangelow I W et al 2018 Field-emission scanning probe lithography with self-actuating and self-sensing cantilevers for devices with single digit nanometer dimensions Proc. SPIE 10584 1058406

    [94] Holz M et al 2018 Field-emission scanning probe lithography tool for 150 mm Wafer J. Vac. Sci. Technol. B 36 06JL06

    Marcus Kaestner, Ivo W Rangelow. Scanning probe lithography on calixarene towards single-digit nanometer fabrication[J]. International Journal of Extreme Manufacturing, 2020, 2(3): 32005
    Download Citation