• Acta Photonica Sinica
  • Vol. 49, Issue 11, 190 (2020)
Yi-dan LI, Yuan CAO, Xu-dong WANG, Jie-jun ZHANG, Xin-huan FENG, and Bai-ou GUAN
Author Affiliations
  • Institute of Photonic Technology, Jinan University, Guangzhou511486, China
  • show less
    DOI: 10.3788/gzxb20204911.1149015 Cite this Article
    Yi-dan LI, Yuan CAO, Xu-dong WANG, Jie-jun ZHANG, Xin-huan FENG, Bai-ou GUAN. Doppler Frequency Shift Measuring Method Based on Dispersion-tuned Actively Mode-locking Technique[J]. Acta Photonica Sinica, 2020, 49(11): 190 Copy Citation Text show less
    References

    [1] Xiao-yan LI, Ai-jun WEN, Wei CHEN. Photonic Doppler frequency shift measurement based on a dual-polarization modulator. Applied Optics, 56, 2084-2089(2017).

    [3] Ai-jun HUANG, Hong DAI. Doppler frequency shift characteristics analysis of high dynamic satellite communication link. Telecommunication Engineering, 60, 263-267(2020).

    [4] Chong-yin YI, Hao CHI, Tao JIN. A PM-based approach for Doppler frequency shift measurement and direction discrimination. Optics Communications, 458, 124796(2020).

    [5] Bing LU, Wei PAN, Xi-hua ZOU. Wideband Microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection. Journal of Lightwave Technology, 34, 4639-4645(2016).

    [6] Bo-chao KANG, Yang-yu FAN, Wu-ying WANG. 6~40 GHz photonic microwave Doppler frequency shift measurement based on polarization multiplexing modulation and I/Q balanced detection. Optics Communications, 456, 124579(2000).

    [7] Kun ZHANG, Hong-tao QIN, Shang-hong ZHAO. Photonic approach to wideband Doppler frequency shift estimation system based on a DPMZM and a Sagnac loop. Optik, 182, 219-226(2019).

    [8] Xi-hua ZOU, Bing LU, Wei PAN. Photonics for microwave measurements. Laser & Photonics Reviews, 10, 711-734(2016).

    [9] Xi-hua ZOU, Wang-zhe LI, Bing LU. Photonic approach to wide-frequency-range high-resolution microwave/millimeter-wave Doppler frequency shift estimation. IEEE Transactions on Microwave Theory & Techniques, 63, 1421-1430(2015).

    [10] Bing LU, Wei PAN, Xi-hua ZOU. Wideband Doppler frequency shift measurement and direction ambiguity resolution using optical frequency shift and optical heterodyning. Optics Letters, 40, 2321(2015).

    [11] Bing LU, Wei PAN, Xi-hua ZOU. Wideband microwave Doppler frequency shift measurement and direction discrimination using photonic I/Q detection. Journal of Lightwave Technology, 34, 4639-4645(2016).

    [12] N YUICHI, Y SHINJI. 3 µm bands, 1-3(2009).

    [13] Y SHINJI. Wide and fast wavelength-swept mode-locked fiber laser based on dispersion tuning and its application to dynamic FBG sensing. Ieice Technical Report, 107, 39-43(2008).

    [14] S YAMASHITA, M ASANO. Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning. Optics Express, 14, 9299-306(2006).

    [15] Y TAKUBO, S YAMASHITA. High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG. Optics Express, 21, 5130-9(2013).

    [17] Na YANG, Jun DU, Yan-chen QU. Research on a combination of two kinds of phase-modulated laser Doppler shift measurement methods. Acta Photonica Sinica, 47, 0412003(2018).

    [18] Yan-chen QU, Jun DU, Wei-jiang ZHAO. A kind of phase modulation laser Doppler shift measuring method. Acta Photonica Sinica, 43, 134-140(2014).

    Yi-dan LI, Yuan CAO, Xu-dong WANG, Jie-jun ZHANG, Xin-huan FENG, Bai-ou GUAN. Doppler Frequency Shift Measuring Method Based on Dispersion-tuned Actively Mode-locking Technique[J]. Acta Photonica Sinica, 2020, 49(11): 190
    Download Citation