• Laser & Optoelectronics Progress
  • Vol. 59, Issue 8, 0820001 (2022)
Guilan Li1、2, Jie Yang1、2、*, and Manguo Zhou1
Author Affiliations
  • 1School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou , Jiangxi 341000, China
  • 2Jiangxi Key Laboratory of Magnetic Levitation Technology, Ganzhou , Jiangxi 341000, China
  • show less
    DOI: 10.3788/LOP202259.0820001 Cite this Article Set citation alerts
    Guilan Li, Jie Yang, Manguo Zhou. Power Prediction of Photovoltaic Generation Based on Improved Temporal Convolutional Network[J]. Laser & Optoelectronics Progress, 2022, 59(8): 0820001 Copy Citation Text show less
    References

    [1] Zhang W D, Liu Z M, Wang Z Z et al. Economic comparison among multiple schemes of photovoltaic flexible grid-connection based on annual irradiance data[J]. Electric Power Automation Equipment, 34, 123-129,136(2014).

    [2] Law E W, Prasad A A, de Kay M et al. Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting-a review[J]. Solar Energy, 108, 287-307(2014).

    [3] Benmouiza K, Cheknane A. Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models[J]. Theoretical and Applied Climatology, 124, 945-958(2016).

    [4] Bai Q F, Lin Y J, Yang K et al. Photovoltaic power prediction considering the influence of atmospheric particles on irradiance[J/OL]. China Measurement & Test, 1-8. http://kns.cnki.net/kcms/detail/51.1714.TB.20211201.1532.020.html

    [5] Jiang Y J. Modeling of photovoltaic cells and its application in energy prediction[D](2011).

    [6] Zhao W J, Zhang N, Kang C Q et al. A method of probabilistic distribution estimation of conditional forecast error for photovoltaic power generation[J]. Automation of Electric Power Systems, 39, 8-15(2015).

    [7] Li C L, Zhu H M, Jing M D et al. Discussion on power prediction method of grid-connected PV power station[J]. Electric Engineering, 27-28(2010).

    [8] Yadav H K, Pal Y, Tripathi M M. Photovoltaic power forecasting methods in smart power grid[C], 15888335(2015).

    [9] Cheng W Y Y, Liu Y B, Bourgeois A J et al. Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation[J]. Renewable Energy, 107, 340-351(2017).

    [10] Ma T, Yang H X, Lu L. Solar photovoltaic system modeling and performance prediction[J]. Renewable and Sustainable Energy Reviews, 36, 304-315(2014).

    [11] Masseran N, Razali A M, Ibrahim K et al. Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia[J]. Energy Conversion and Management, 72, 94-102(2013).

    [12] Guan L, Zhao Q, Zhou B R et al. Multi-scale clustering analysis based modeling of photovoltaic power characteristics and its application in prediction[J]. Automation of Electric Power Systems, 42, 24-30(2018).

    [13] Zhou J Y, Shi J, Li G. Fine tuning support vector machines for short-term wind speed forecasting[J]. Energy Conversion and Management, 52, 1990-1998(2011).

    [14] Goodfellow I, Bengio Y, Courville A[M]. Deep learning(2016).

    [15] Wang Y F, Fu Y C, Sun L et al. Ultra-short term prediction model of photovoltaic output power based on chaos-RBF neural network[J]. Power System Technology, 42, 1110-1116(2018).

    [16] Yao H M, Du X H, Qin W P. PV power forecasting approach based on density peaks clustering and general regression neural network[J]. Acta Energiae Solaris Sinica, 41, 184-190(2020).

    [17] Zhang Q, Ma Y, Li G L et al. Applications of frequency domain decomposition and deep learning algorithms in short-term load and photovoltaic power forecasting[J]. Proceedings of the CSEE, 39, 2221-2230(2019).

    [18] Cao S Q, Hao W J, Wang H et al. Prediction of effective wind speed at hub of wind turbine based on lidar-Armax[J]. Laser & Optoelectronics Progress, 57, 171407(2020).

    [19] Gao X D, Hu C H, Zhang J X et al. Adaptive prediction of remaining useful life for optoelectronic equipment based on nonlinear fractional Brownian motion[J]. Acta Optica Sinica, 40, 2423001(2020).

    [20] Guo H M, Wu B J, Jiang X R et al. Research on detection method of modal power using photonic lantern[J]. Acta Optica Sinica, 42, 0106003(2022).

    [21] Sun Z Q, Li D Y. Prediction model of photovoltaic power generation based on time-frequency entropy and neural network[J]. Journal of Central South University (Science and Technology), 51, 221-230(2020).

    [22] Wang C Y, Duan Q Q, Zhou K et al. A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm[J]. Acta Physica Sinica, 69, 20191935(2020).

    [23] Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization[EB/OL]. https://arxiv.org/abs/1409.2329v5

    [24] Niu Z W, Yu Z Y, Li B et al. Short-term wind power forecasting model based on deep gated recurrent unit neural network[J]. Electric Power Automation Equipment, 38, 36-42(2018).

    [25] Cho K, van Merrienboer B, Bahdanau D et al. On the properties of neural machine translation: encoder-decoder approaches[C], 103-111(2014).

    [26] Qiao Y, Sun R F, Ding R et al. Distributed photovoltaic station cluster short-term power forecasting part Ⅱ: gridding prediction[J]. Power System Technology, 45, 2210-2218(2021).

    [27] Bai S J, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. https://arxiv.org/abs/1803.01271

    [28] Li B, Lu M Z. Short-term load forecasting modeling of regional power grid considering real-time meteorological coupling effect[J]. Automation of Electric Power Systems, 44, 60-68(2020).

    [29] Gan Z H, Li C S, Zhou J Z et al. Temporal convolutional networks interval prediction model for wind speed forecasting[J]. Electric Power Systems Research, 191, 106865(2021).

    [30] Lara-Benítez P, Carranza-García M, Luna-Romera J M et al. Temporal convolutional networks applied to energy-related time series forecasting[J]. Applied Sciences, 10, 2322(2020).

    [31] Li K, Li X Y, Chen S et al. Analysis oneasibility of damping HVDC-induced sub synchronous oscillation by photovoltaic grid-connection[J]. Electric Power Automation Equipment, 35, 41-46(2015).

    [32] Reshef D N, Reshef Y A, Finucane H K et al. Detecting novel associations in large data sets[J]. Science, 334, 1518-1524(2011).

    [33] Székely G J, Rizzo M L, Bakirov N K. Measuring and testing dependence by correlation of distances[J]. The Annals of Statistics, 35, 2769-2794(2007).

    [34] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[EB/OL]. http://arxiv.org/abs/1511.07122v1

    [35] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [36] Kalogirou S A. Artificial neural networks in renewable energy systems applications: a review[J]. Renewable and Sustainable Energy Reviews, 5, 373-401(2001).

    Guilan Li, Jie Yang, Manguo Zhou. Power Prediction of Photovoltaic Generation Based on Improved Temporal Convolutional Network[J]. Laser & Optoelectronics Progress, 2022, 59(8): 0820001
    Download Citation