• Infrared and Laser Engineering
  • Vol. 50, Issue 11, 20210506 (2021)
Sai Yan, Xin Xie, and Xiulai Xu
Author Affiliations
  • Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.3788/IRLA20210506 Cite this Article
    Sai Yan, Xin Xie, Xiulai Xu. Research progress of topological lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210506 Copy Citation Text show less
    References

    [1] A R A Chalcraft, S Lam, D O’Brien, et al. Mode structure of the L 3 photonic crystal cavity. Applied Physics Letters, 90, 241117(2007).

    [2] A H Safavi-Naeini, T P M Alegre, M Winger, et al. Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Applied Physics Letters, 97, 181106(2010).

    [3] J Vučković, M Lončar, H Mabuchi, et al. Design of photonic crystal microcavities for cavity QED. Physical Review E, 65, 016608(2001).

    [4] T Yamamoto, Y A Pashkin, O Astafiev, et al. Demonstration of conditional gate operation using superconducting charge qubits. Nature, 425, 941-944(2003).

    [5] T Yoshie, J Vučković, A Scherer, et al. High quality two-dimensional photonic crystal slab cavities. Applied Physics Letters, 79, 4289-4291(2001).

    [6] A Faraon, E Waks, D Englund, et al. Efficient photonic crystal cavity-waveguide couplers. Applied Physics Letters, 90, 073102(2007).

    [7] A K Goyal, S Pal. Design and simulation of high sensitive photonic crystal waveguide sensor. Optik, 126, 240-243(2015).

    [8] L Gu, W Jiang, X Chen, et al. High speed silicon photonic crystal waveguide modulator for low voltage operation. Applied Physics Letters, 90, 071105(2007).

    [9] S Barik, A Karasahin, C Flower, et al. A topological quantum optics interface. Science, 359, 666-668(2018).

    [10] J L Tambasco, G Corrielli, R J Chapman, et al. Quantum interference of topological states of light. Science Advances, 4, 3187(2018).

    [11] M Hafezi, S Mittal, J Fan, et al. Imaging topological edge states in silicon photonics. Nature Photonics, 7, 1001-1005(2013).

    [12] F D M Haldane, S Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Physical Review Letters, 100, 013904(2008).

    [13] A B Khanikaev, S H Mousavi, W K Tse, et al. Photonic topological insulators. Nature Materials, 12, 233-239(2013).

    [14] L Lu, J D Joannopoulos, M Soljačić. Topological photonics. Nature Photonics, 8, 821-829(2014).

    [15] S Mittal, E A Goldschmidt, M Hafezi. A topological source of quantum light. Nature, 561, 502-506(2018).

    [16] T Ozawa, H M Price, A Amo, et al. Topological photonics. Reviews of Modern Physics, 91, 015006(2019).

    [17] M C Rechtsman, J M Zeuner, Y Plotnik, et al. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [18] Y Wang, Y H Lu, F Mei, et al. Direct observation of topology from single-photon dynamics. Physical Review Letters, 122, 193903(2019).

    [19] Z Wang, Y Chong, J D Joannopoulos, et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [20] L H Wu, X Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Physical Review Letters, 114, 223901(2015).

    [21] W J Chen, S J Jiang, X D Chen, et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nature Communications, 5, 5782(2014).

    [22] Y Yang, Y F Xu, T Xu, et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Physical Review Letters, 120, 217401(2018).

    [23] Y F Gao, J P Sun, N Xu, et al. Manipulation of topological beam splitter based on honeycomb photonic crystals. Optics Communications, 483, 126646(2021).

    [24] L He, H Y Ji, Y J Wang, et al. Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs. Optics Express, 28, 34015-34023(2020).

    [25] L Qi, G L Wang, S Liu, et al. Engineering the topological state transfer and topological beam splitter in an even-sized Su-Schrieffer-Heeger chain. Physical Review A, 102, 022404(2020).

    [26] Y Yang, Z Gao, H Xue, et al. Realization of a three-dimensional photonic topological insulator. Nature, 565, 622-626(2019).

    [27] C Y Ji, G B Liu, Y Zhang, et al. Transport tuning of photonic topological edge states by optical cavities. Physical Review A, 99, 043801(2019).

    [28] H R Kim, M S Hwang, D Smirnova, et al. Multipolar lasing modes from topological corner states. Nature Communications, 11, 5758(2020).

    [29] Y Li, Y Yu, F Liu, et al. Topology-controlled photonic cavity based on the near-conservation of the valley degree of freedom. Physical Review Letters, 125, 213902(2020).

    [30] Y Ota, F Liu, R Katsumi, et al. Photonic crystal nanocavity based on a topological corner state. Optica, 6, 786-789(2019).

    [31] S Raghu, F D M Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Physical Review A, 78, 033834(2008).

    [32] M Hafezi, E A Demler, M D Lukin, et al. Robust optical delay lines with topological protection. Nature Physics, 7, 907-912(2011).

    [33] F Gao, H Xue, Z Yang, et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nature Physics, 14, 140-144(2018).

    [34] T Ma, G Shvets. All-Si valley-hall photonic topological insulator. New Journal of Physics, 18, 025012(2016).

    [35] J Noh, S Huang, K P Chen, et al. Observation of photonic topological valley Hall edge states. Physical Review Letters, 120, 063902(2018).

    [36] M I Shalaev, W Walasik, A Tsukernik, et al. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nature Nanotechnology, 14, 31-34(2019).

    [37] H Yoshimi, T Yamaguchi, R Katsumi, et al. Experimental demonstration of topological slow light waveguides in valley photonic crystals. Optics Express, 29, 13441-13450(2021).

    [38] Y Gong, S Wong, A J Bennett, et al. Topological insulator laser using valley-Hall photonic crystals. ACS Photonics, 7, 2089-2097(2020).

    [39] T H Harder, M Sun, O A Egorov, et al. Coherent topological polariton laser. ACS Photonics, 8, 1377-1384(2021).

    [40] L Pilozzi, C Conti. Topological cascade laser for frequency comb generation in PT-symmetric structures. Optics Letters, 42, 5174-5177(2017).

    [41] D Smirnova, A Tripathi, S Kruk, et al. Room-temperature lasing from nanophotonic topological cavities. Light: Science & Applications, 9, 127(2020).

    [42] H Zhao, P Miao, M H Teimourpour, et al. Topological hybrid silicon microlasers. Nature Communications, 9, 981(2018).

    [43] Z Qian, Z Li, H Hao, et al. Absorption reduction of large purcell enhancement enabled by topological state-led mode coupling. Physical Review Letters, 126, 023901(2021).

    [44] X Xie, W Zhang, X He, et al. Cavity quantum electrodynamics with second-order topological corner state. Laser & Photonics Reviews, 14, 1900425(2020).

    [45] P St-Jean, V Goblot, E Galopin, et al. Lasing in topological edge states of a one-dimensional lattice. Nature Photonics, 11, 651-656(2017).

    [46] C Han, M Lee, S Callard, et al. Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array. Light: Science & Applications, 8, 40(2019).

    [47] B Bahari, A Ndao, F Vallini, et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science, 358, 636-640(2017).

    [48] W Zhang, X Xie, H Hao, et al. Low-threshold topological nanolasers based on the second-order corner state. Light: Science & Applications, 9, 109(2020).

    [49] M Parto, S Wittek, H Hodaei, et al. Edge-mode lasing in 1D topological active arrays. Physical Review Letters, 120, 113901(2018).

    [50] K Fang, Z Yu, S Fan. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photonics, 6, 782-787(2012).

    [51] J K Asbóth, L Oroszlány, A Pályi. A short course on topological insulators. Lecture Notes in Physics, 919, 166(2016).

    [52] Y Ota, K Takata, T Ozawa, et al. Active topological photonics. Nanophotonics, 9, 547-567(2020).

    [53] S Weimann, M Kremer, Y Plotnik, et al. Topologically protected bound states in photonic parity–time-symmetric crystals. Nature Materials, 16, 433-438(2017).

    [54] Y Ota, R Katsumi, K Watanabe, et al. Topological photonic crystal nanocavity laser. Communications Physics, 1, 86(2018).

    [55] M Xiao, Z Q Zhang, C T Chan. Surface impedance and bulk band geometric phases in one-dimensional systems. Physical Review X, 4, 021017(2014).

    [56] F Alpeggiani, L C Andreani, D Gerace. Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities. Applied Physics Letters, 107, 261110(2015).

    [57] A Simbula, M Schatzl, L Zagaglia, et al. Realization of high-Q/V photonic crystal cavities defined by an effective Aubry-André-Harper bichromatic potential. APL Photonics, 2, 056102(2017).

    [58] F Alpeggiani, L Kuipers. Topological edge states in bichromatic photonic crystals. Optica, 6, 96-103(2019).

    [59] L Pilozzi, C Conti. Topological lasing in resonant photonic structures. Physical Review B, 93, 195317(2016).

    [60] Z Wang, Y D Chong, J D Joannopoulos, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Physical Review Letters, 100, 013905(2008).

    [61] S Klembt, T H Harder, O A Egorov, et al. Exciton-polariton topological insulator. Nature, 562, 552-556(2018).

    [62] A V Nalitov, D D Solnyshkov, G Malpuech. Polariton Z topological insulator. Physical Review Letters, 114, 116401(2015).

    [63] T Karzig, C E Bardyn, N H Lindner, et al. Topological polaritons. Physical Review X, 5, 031001(2015).

    [64] Y V Kartashov, D V Skryabin. Two-dimensional topological polariton laser. Physical Review Letters, 122, 083902(2019).

    [65] I Carusotto, C Ciuti. Quantum fluids of light. Reviews of Modern Physics, 85, 299(2013).

    [66] Y V Kartashov, D V Skryabin. Modulational instability and solitary waves in polariton topological insulators. Optica, 3, 1228-1236(2016).

    [67] Y V Kartashov, D V Skryabin. Bistable topological insulator with exciton-polaritons. Physical Review Letters, 119, 253904(2017).

    [68] M A Bandres, S Wittek, G Harari, et al. Topological insulator laser: Experiments. Science, 359, 4005(2018).

    [69] G Harari, M A Bandres, Y Lumer, et al. Topological insulator laser:Theory. Science, 359, 4003(2018).

    [70] C L Kane, E J Mele. Z 2 topological order and the quantum spin Hall effect. Physical Review Letters, 95, 146802(2005).

    [71] C L Kane, E J Mele. Quantum spin Hall effect in graphene. Physical Review Letters, 95, 226801(2005).

    [72] B A Bernevig, T L Hughes, S C Zhang. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 314, 1757-1761(2006).

    [73] X D Chen, W M Deng, F L Shi, et al. Direct observation of corner states in second-order topological photonic crystal slabs. Physical Review Letters, 122, 233902(2019).

    [74] A Dutt, M Minkov, I A D Williamson, et al. Higher-order topological insulators in synthetic dimensions. Light: Science & Applications, 9, 131(2020).

    [75] S Imhof, C Berger, F Bayer, et al. Topolectrical-circuit realization of topological corner modes. Nature Physics, 14, 925-929(2018).

    [76] J Langbehn, Y Peng, L Trifunovic, et al. Reflection-symmetric second-order topological insulators and superconductors. Physical Review Letters, 119, 246401(2017).

    [77] T Liu, Y R Zhang, Q Ai, et al. Second-order topological phases in non-hermitian systems. Physical Review Letters, 122, 076801(2019).

    [78] M Serra-Garcia, V Peri, R Süsstrunk, et al. Observation of a phononic quadrupole topological insulator. Nature, 555, 342-345(2018).

    [79] S Mittal, V V Orre, G Zhu, et al. Photonic quadrupole topological phases. Nature Photonics, 13, 692-696(2019).

    [80] J Noh, W A Benalcazar, S Huang, et al. Topological protection of photonic mid-gap defect modes. Nature Photonics, 12, 408-415(2018).

    [81] C W Peterson, W A Benalcazar, T L Hughes, et al. A quantized microwave quadrupole insulator with topologically protected corner states. Nature, 555, 346-350(2018).

    [82] W A Benalcazar, B A Bernevig, T L Hughes. Quantized electric multipole insulators. Science, 357, 61-66(2017).

    [83] B Y Xie, G X Su, H F Wang, et al. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Physical Review Letters, 122, 233903(2019).

    [84] X Zhang, H X Wang, Z K Lin, et al. Second-order topology and multidimensional topological transitions in sonic crystals. Nature Physics, 15, 582-588(2019).

    [85] F Schindler, A M Cook, M G Vergniory, et al. Higher-order topological insulators. Science Advances, 4, 0346(2018).

    [86] S Franca, den Brink J van, I C Fulga. An anomalous higher-order topological insulator. Physical Review B, 98, 201114(2018).

    [87] S N Kempkes, M R Slot, Den Broeke J J van, et al. Robust zero-energy modes in an electronic higher-order topological insulator. Nature Materials, 18, 1292-1297(2019).

    [88] M J Park, Y Kim, G Y Cho, et al. Higher-order topological insulator in twisted bilayer graphene. Physical Review Letters, 123, 216803(2019).

    [89] H Xue, Y Yang, F Gao, et al. Acoustic higher-order topological insulator on a kagome lattice. Nature Materials, 18, 108-112(2019).

    [90] H Xue, Y Yang, G Liu, et al. Realization of an acoustic third-order topological insulator. Physical Review Letters, 122, 244301(2019).

    [91] H Zhong, Y V Kartashov, A Szameit, et al. Theory of topological corner state laser in Kagome waveguide arrays. APL Photonics, 6, 040802(2021).

    [92] M Atala, M Aidelsburger, J T Barreiro, et al. Direct measurement of the Zak phase in topological Bloch bands. Nature Physics, 9, 795-800(2013).

    [93] X J Liu, M Ren, Q Pan, et al. The Zak phase calculation of one-dimensional photonic crystals with classical and quantum theory. Physica E: Low-dimensional Systems and Nanostructures, 126, 114415(2021).

    [94] Y Arakawa, H Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Applied Physics Letters, 40, 939-941(1982).

    [95] H Yoshida, Y Yamashita, M Kuwabara, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Applied Physics Letters, 93, 241106(2008).

    [96] C Qian, S Wu, F Song, et al. Two-photon Rabi splitting in a coupled system of a nanocavity and exciton complexes. Physical Review Letters, 120, 213901(2018).

    [97] J Yang, C Qian, X Xie, et al. Diabolical points in coupled active cavities with quantum emitters. Light: Science & Applications, 9, 6(2020).

    CLP Journals

    [1] Jiani Liu, Anhe Chen, Zhiyong Li, Fangyuan Xia, Bingcai Liu, Shijie Li. High-precision shape measurement technology for convex aspheric with small aperture and large convex asphericity[J]. Infrared and Laser Engineering, 2022, 51(9): 20220190

    Sai Yan, Xin Xie, Xiulai Xu. Research progress of topological lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210506
    Download Citation