• Journal of Inorganic Materials
  • Vol. 37, Issue 6, 629 (2022)
Xingang WANG1, Qingqing YANG1, Genlian LIN2, Wei GAO1, Fulin QIN1, Rongzhen LI1, Zhuang KANG2、*, Xiaofei WANG1, Danyu JIANG1, and Jina YAN2
Author Affiliations
  • 11. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. R&D Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.15541/jim20210443 Cite this Article
    Xingang WANG, Qingqing YANG, Genlian LIN, Wei GAO, Fulin QIN, Rongzhen LI, Zhuang KANG, Xiaofei WANG, Danyu JIANG, Jina YAN. High Temperature Tensile Property of Domestic 550-grade Continuous Alumina Ceramic Fiber[J]. Journal of Inorganic Materials, 2022, 37(6): 629 Copy Citation Text show less
    References

    [4] R S M ALMEIDA, K TUSHTEV, B CLAUSS et al. Tensile and creep performance of a novel mullite fiber at high temperatures. Composites Part A, 37-43(2015).

    [5] X S ZHANG, B WANG, N WU et al. Micro- nano ceramic fibers for high temperature thermal insulation. Journal of Inorganic Materials, 245-256(2021).

    [6] D M WILSON, L R VISSER. High performance oxide fiber for metal and ceramic composites. Composites: Part A, 1143-1153(2001).

    [7] H SCHOLZ, J VETTER, R HERBORN et al. Oxide ceramic fibers via dry spinning process—from lab to fab. International Journal of Applied Ceramic Technology, 1636-1645(2020).

    [8] F DELEGLISE, M H BERGER, D JEULIN et al. Microstructural stability and room temperature mechanical properties of the Nextel 720 fibre. Journal of the European Ceramic Society, 569-580(2001).

    [9] X LONG, Z WU, C SHAO et al. High-temperature oxidation behavior of SiBN fibers in air. Journal of Advanced Ceramics, 768-777(2021).

    [10] Y WANG, H T LIU, H F CHENG et al. Research progress on oxide/oxide ceramic matrix composites. Journal of Inorganic Materials, 673-680(2014).

    [11] X F MA, G L LIN, Z KANG et al. Crystallization behavior of hybrid mullite fiber precursors. Journal of Inorganic Materials, 739-743(2017).

    [13] R S M ALMEIDA, E L BERGMULLER, B G F EGGERT et al. Thermal exposure effects on the strength and microstructure of a novel mullite fiber. Journal of the American Ceramic Society, 1709-1716(2016).

    [14] R JIANG, H T LIU, L W YANG et al. Mechanical properties of aluminosilicate fiber heat-treated from 800 ℃ to 1400 ℃: effects of phase transition, grain growth and defects. Materials Characterization, 120-126(2018).

    [15] L REINDERS, S PFEIFER, S KRONER et al. Development of mullite fibers and novel zirconia-toughened mullite fibers for high temperature applications. Journal of the European Ceramic Society, 3570-3580(2021).

    [17] . EN 1007-6:2007 Advanced technical ceramics-Ceramic composites- Methods of test for reinforcement - Part 6: Determination of tensile properties of filaments at high temperature.

    [18] T KUMAZAWA, H SUZUKI. Improvement in sinterability and high-temperature mechanical properties by grain boundary design for high purity mullite ceramics: crystallization of grain-boundary glassy phase. Journal of the Ceramic Society of Japan, 685-692(2020).

    [19] D M WILSON. Statistical tensile strength of NextelTM 610 and NextelTM 720 fibres. Journal of Materials Science, 2535-2542(1997).

    Xingang WANG, Qingqing YANG, Genlian LIN, Wei GAO, Fulin QIN, Rongzhen LI, Zhuang KANG, Xiaofei WANG, Danyu JIANG, Jina YAN. High Temperature Tensile Property of Domestic 550-grade Continuous Alumina Ceramic Fiber[J]. Journal of Inorganic Materials, 2022, 37(6): 629
    Download Citation