• Infrared and Laser Engineering
  • Vol. 48, Issue 1, 105003 (2019)
Duan Jialin1、*, Li Xudong2, Wu Wentao2, Lin Sen2, Fan Rongwei2, Dong Zhiwei2, Zhou Zhigang2, and Chen Deying2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0105003 Cite this Article
    Duan Jialin, Li Xudong, Wu Wentao, Lin Sen, Fan Rongwei, Dong Zhiwei, Zhou Zhigang, Chen Deying. Research on LD pumped 1.06 μm burst-mode laser and the amplification systems[J]. Infrared and Laser Engineering, 2019, 48(1): 105003 Copy Citation Text show less
    References

    [1] Ni Xuxiang, Hu Kai. Research on multi-pulse train cross-correlation technology in remote laser ranging [J]. Acta Optica Sinica, 2012, 32(11): 1112005. (in Chinese)

    [2] Zhong Shengyuan, Li Songshan. Study of multi-pulsed laser ranging technology [J]. Laser & Infrared, 2006, 36(b09):797-799.

    [3] Jiang N. Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames [J]. Proceedings of the Combustion Institute, 2011, 33(1): 767-774.

    [4] Jiang N. NO PLIF imaging in the CUBRC 48-inch shock tunnel [J]. Research Article, 2012, 53: 1637-1646.

    [5] Gattass R R, Cerami L R, Mazur E. Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates[J]. Optics Express, 2006, 14(12): 5279-5284.

    [6] Chen Shanshan, Zhang He, Xu Xiaobin. Modeling and simulation of acquisition for ground target by pulsed laser circular-viewing detection[J]. Infrared and Laser Engineering, 2018, 47(2): 0206001. (in Chinese)

    [7] Zhang Jian, Yu Yongji, Jiang Chengyao, et al. Experiment comparison of acousto-optical Q-switching and RTP electro-optical Q-switching of high repetition frequency Nd: YVO4 laser[J]. Infrared and Laser Engineering, 2017, 46(2): 0205002. (in Chinese)

    [8] Liu Qiuwu, Chen Yafeng, Wang Jie, et al. Effects of wavelength shift and energy fluctuation on inversion of NO2 differential absorption lidar[J]. Optics and Precision Engineering, 2018, 26(2): 253-260. (in Chinese)

    [9] Zhao Zhilong, Wu Jin, Wang Haitao, et al. Experimental demonstration of differential synthetic aperture ladar imaging at very low return level[J]. Optics and Precision Engineering, 2018, 26(2): 276-283. (in Chinese)

    [10] An Haixia, Deng Kun, Bi Zhiyue. Miniaturization and lightweight technology of high-power laser equipment[J]. Chinese Optics, 2017, 10(3): 321-330. (in Chinese)

    [11] Ouyang Aiguo, Zhang Yu, Cheng Mengjie, et al. Determination of the content of ethanol in ethanol gasoline using mid-infrared spectroscopy[J]. Chinese Optics, 2017, 10(6): 752-759. (in Chinese)

    [12] Slipchenko M N, Miller J D, Roy S, et al. All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging [J]. Opt Express, 2013, 21(1): 681-689.

    [13] Wu Wentao, Li Xudong, Yan Renpeng, et al. 100 kHz, 3.1 ns, 1.89 J cavity-dumped burst-mode Nd:YAG MOPA laser [J]. Opt Express, 2017, 25(22): 26875-26884.

    [14] Young W C, Morton L A, Parkea E, et al. High-repetition-rate pulse-burst laser for Thomson scattering on the MST reversed-field pinch [J]. IOP Science, doi:10.1088/1748-0221/8/11/C11013.

    [15] Roy S, Miller J D, Slipchenko M N. 100-ps-pulse-duration, 100-J burst-mode laser for kHz-MHz flow diagnostics[J]. Optics Letters, 2014, 39(22): 6462-6465.

    Duan Jialin, Li Xudong, Wu Wentao, Lin Sen, Fan Rongwei, Dong Zhiwei, Zhou Zhigang, Chen Deying. Research on LD pumped 1.06 μm burst-mode laser and the amplification systems[J]. Infrared and Laser Engineering, 2019, 48(1): 105003
    Download Citation