• Journal of Infrared and Millimeter Waves
  • Vol. 38, Issue 1, 97 (2019)
CHENG Yong-Zhi1、*, ZUO Xuan1, HUANG Mu-Lin1, WANG Tong-Nian1, and GONG Rong-Zhou2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2019.01.016 Cite this Article
    CHENG Yong-Zhi, ZUO Xuan, HUANG Mu-Lin, WANG Tong-Nian, GONG Rong-Zhou. Design of a photo-excited broadband tunable terahertz absorber[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 97 Copy Citation Text show less
    References

    [1] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514):77-79.

    [2] SHALAEV V M, CAI W S, CHETTIAR U K, et al. Negative index of refraction in optical metamaterials [J]. Optics Letters, 2005, 30(24):3356-3358.

    [3] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields [J]. Science, 2006, 312(5781): 1780-1782.

    [4] GU J Q, SINGH R J, LIU X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials [J]. Nature Communications, 2012, 3:1151.

    [5] CHEN H T, PADILLA W J, ZIDE J M O, et al. Active terahertz metamaterial devices [J]. Nature Photonics, 2006, 444(7119):597-600.

    [6] VICARELLI L, VITIELLO M S, COQUILLAT D, et al. Graphene field-effect transistors as room-temperature terahertz detectors [J]. Nature Materials, 2012, 11(10):865-871.

    [7] CHEN H T, PADILLA W J, CICH M J A, et al. A metamaterial solid-state terahertz phase modulator [J]. Nature Photonics, 2009, 3(3):148-151.

    [8] SHEN N H, MASSAOUTI M, GOKKAVAS M, et al. Optically Implemented Broadband Blueshift Switch in the Terahertz Regime [J]. Physical Review Letters, 2011, 106(3):037403.

    [9] TAO H, LANDY N I, BINGHAM C M, et al. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization [J]. Optics Express, 2008, 16(10):7181-7188.

    [10] CHENG Y Z, WITHAYACHUMNAKNKUL W, UPADHYAY A, et al. Ultrabroadband plasmonic absorber for terahertz waves [J]. Advance Optical materials, 2015, 3(3):376-380.

    [11] HU B B, NUSS M C. Imaging with terahertz waves [J]. Optics Letters, 1995, 20(16):1716.

    [13] TAUK R, TEPPE F, BOUBANGA S, et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power [J]. Applied Physics Letters, 2006, 89(25):253511.

    [14] LE L N, THANG N M, THUY L M, et al. Hybrid semiconductor-dielectric metamaterial modulation for switchable bi-directional THz absorbers [J]. Optics Communications, 2017, 383:244-249.

    [15] ZHU J, HAN J, TIAN Z, et al. Thermal broadband tunable terahertz metamaterials [J]. Optical Communications, 2011, 284(12):3129-3133.

    [16] HEDAYATI M K, JAVAHERI M, ZILLOHU A U, et al. Photo-driven super absorber as an active metamaterial with a tunable molecular-plasmonic coupling [J]. Advanced Optical Materials, 2014, 2(8):705-710.

    [17] Faraji M, MORAVVEJ-FARSHI M K, YOUSEFI L. Tunable THz perfect absorber using graphene-based metamaterials [J]. Optics Communication, 2015, 355:352-355.

    [19] SHEN X P, CUI T J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber [J]. Journal of Optics, 2012, 14(11):114012.

    [20] XU Z C, GAO R M, DING C F, et al. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber [J]. Optical Materials, 2015, 42:148-151.

    [21] CHENG Y Z, GONG R Z, CHENG Z Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves [J]. Optics Communications, 2016, 361:41-46.

    [22] CHENG Y Z, GONG R Z, ZHAO J C. A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves [J]. Optical Materials, 2016, 62:28-33.

    [23] ZHOU J F, ECONOMON N E, KOSCHNY T, et al. Unifying approach to left-handed material design [J]. Optics Letters, 2006, 31(24):3620-3622.

    [24] GHOSH S, SRIVASTAVA K V. An equivalent circuit model of FSS-Based metamaterial absorber using coupled line theory [J]. IEEE Antennas and Wireless Propagation Letters, 2015 14:511-514.

    [25] OZBEY B, ALTINTAS A, DEMIR H V, et al. An equivalent circuit model for nested split-ring resonators [J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(10):3733-3.

    CHENG Yong-Zhi, ZUO Xuan, HUANG Mu-Lin, WANG Tong-Nian, GONG Rong-Zhou. Design of a photo-excited broadband tunable terahertz absorber[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 97
    Download Citation