• Chinese Journal of Lasers
  • Vol. 47, Issue 12, 1202005 (2020)
Hu Zehua1, Song Changhui1、*, Liu Linqing1, Yang Yongqiang1, and Hu Ping2
Author Affiliations
  • 1School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
  • 2School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
  • show less
    DOI: 10.3788/CJL202047.1202005 Cite this Article Set citation alerts
    Hu Zehua, Song Changhui, Liu Linqing, Yang Yongqiang, Hu Ping. Research Progress of Selective Laser Melting of Nitinol[J]. Chinese Journal of Lasers, 2020, 47(12): 1202005 Copy Citation Text show less
    References

    [1] Chen H L, Luo B, Zhu Z C et al. 4D printing: progress in additive manufacturing technology of smart materials and structure[J]. Journal of Xi’an Jiaotong University, 52, 1-12(2018).

    [2] Sun L, Huang W M, Ding Z et al. Stimulus-responsive shape memory materials:a review[J]. Materials & Design, 33, 577-640(2012). http://www.sciencedirect.com/science/article/pii/S0261306911003359

    [3] Saedi S, Saghaian S E, Jahadakbar A et al. Shape memory response of porous NiTi shape memory alloys fabricated by selective laser melting[J]. Journal of Materials Science: Materials in Medicine, 29, 40(2018).

    [4] Frenzel J, Zhang Z, Somsen C et al. Influence of carbon on martensitic phase transformations in NiTi shape memory alloys[J]. Acta Materialia, 55, 1331-1341(2007).

    [5] components[J]. Materials Science Forum. Wu M H. Fabrication of nitinol materials, 394/395, 285-292(2002).

    [6] Weinert K, Petzoldt V. Machining of NiTi based shape memory alloys[J]. Materials Science and Engineering A, 378, 180-184(2004).

    [7] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [8] Ma J, Franco B, Tapia G et al. Spatial control of functional response in 4D-printed active metallic structures[J]. Scientific Reports, 7, 46707(2017).

    [9] Lu H Z, Yang C, Luo X et al. Ultrahigh-performance TiNi shape memory alloy by 4D printing[J]. Materials Science and Engineering A, 763, 138166(2019).

    [10] Song B, Zhuo L R, Wen Y T et al[J]. The status and future of 4D printing technology Electromachining & Mould, 2018, 1-7, 30.

    [11] Tian X Y, Wang Q R, Li D C et al. Programmable morphing composite structures by 4D printing[J]. Aeronautical Manufacturing Technology, 62, 20-27(2019).

    [12] Leary M, Schiavone F, Subic A. Lagging for control of shape memory alloy actuator response time[J]. Materials & Design, 31, 2124-2128(2010).

    [13] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [14] Haberland C, Elahinia M, Walker J et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing[J]. Smart Materials and Structures, 23, 104002(2014).

    [15] Ou S F, Peng B Y, Chen Y C et al. Manufacturing and characterization of NiTi alloy with functional properties by selective laser melting[J]. Metals, 8, 342(2018).

    [16] Taheri Andani M, Saedi S, Turabi A S et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 68, 224-231(2017).

    [17] Dadbakhsh S, Vrancken B, Kruth J P et al. Texture and anisotropy in selective laser melting of NiTi alloy[J]. Materials Science and Engineering A, 650, 225-232(2016).

    [18] Speirs M, Wang X, Baelen S et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM[J]. Shape Memory and Superelasticity, 2, 310-316(2016).

    [19] Saedi S, Shayesteh Moghaddam N, Amerinatanzi A et al. On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi[J]. Acta Materialia, 144, 552-560(2018).

    [20] Moghaddam N S, Saedi S, Amerinatanzi A et al[J]. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment Scientific Reports, 9, 41.

    [21] Bormann T, Müller B, Schinhammer M et al. Microstructure of selective laser melted nickel-titanium[J]. Materials Characterization, 94, 189-202(2014).

    [22] Khoo Z X, Liu Y, An J et al. A review of selective laser melted NiTi shape memory alloy[J]. Materials, 11, 519-530(2018).

    [23] Yao Y S, Wang J, Chen Q B et al. Research status of defects and defect treatment technology for laser additive manufactured products[J]. Laser & Optoelectronics Progress, 56, 100004(2019).

    [24] Wu W H, Yang Y Q, Wang D. Balling phenomenon in selective laser melting process[J]. Journal of South China University of Technology (Natural Science Edition), 38, 110-115(2010).

    [25] Zhang K, Liu T T, Zhang C D et al. Study on deformation behavior in selective laser melting based on the analysis of the melt pool data[J]. Chinese Journal of Lasers, 42, 0903007(2015).

    [26] Zhang X C, Zhang X L, Liu Z et al. Application of industrial CT technology for additive manufacturing product by selective laser melting[J]. Nondestructive Testing, 41, 52-57(2019).

    [27] Sam J, Franco B, Ma J et al. Tensile actuation response of additively manufactured nickel-titanium shape memory alloys[J]. Scripta Materialia, 146, 164-168(2018).

    [28] Khoo Z X. Teoh J E M, Liu Y, et al. 3D printing of smart materials: a review on recent progresses in 4D printing[J]. Virtual and Physical Prototyping, 10, 103-122(2015).

    [29] Dadbakhsh S, Speirs M, Kruth J P et al. Influence of SLM on shape memory and compression behaviour of NiTi scaffolds[J]. CIRP Annals, 64, 209-212(2015).

    [30] Shishkovsky I, Yadroitsev I, Smurov I. Direct selective laser melting of nitinol powder[J]. Physics Procedia, 39, 447-454(2012).

    [31] Habijan T, Haberland C, Meier H et al. The biocompatibility of dense and porous nickel-titanium produced by selective laser melting[J]. Materials Science and Engineering C, 33, 419-426(2013).

    [32] Dadbakhsh S, Speirs M, Kruth J P et al. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts[J]. Advanced Engineering Materials, 16, 1140-1146(2014).

    [33] Bormann T, Schumacher R, Müller B et al. Tailoring selective laser melting process parameters for NiTi implants[J]. Journal of Materials Engineering and Performance, 21, 2519-2524(2012).

    [34] Haberland C, Elahinia M, Walker J et al. Additive manufacturing of shape memory devices and pseudoelastic components. [C]//Proceedings of ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 16-18, 2013, Snowbird, Utah, USA. [S.l.:s.n.](2014).

    [35] Schüller E, Bram M, Buchkremer H P et al. Phase transformation temperatures for NiTi alloys prepared by powder metallurgical processes[J]. Materials Science and Engineering A, 378, 165-169(2004).

    [36] Frenzel J, George E P, Dlouhy A et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys[J]. Acta Materialia, 58, 3444-3458(2010).

    [37] Haberland C, Meier H, Frenzel J. On the properties of Ni-rich NiTi shape memory parts produced by selective laser melting. [C]//Proceedings of ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 19-21, 2012, Stone Mountain, Georgia, USA. [S.l.:s.n.], 97-104(2013).

    [38] Saedi S, Turabi A S, Andani M T et al. Thermomechanical characterization of Ni-rich NiTi fabricated by selective laser melting[J]. Smart Materials and Structures, 25, 035005(2016).

    [39] Saedi S, Turabi A S, Taheri Andani M et al. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting[J]. Journal of Alloys and Compounds, 677, 204-210(2016).

    [40] de Wild M, Schollbach T, Schumacher R et al. Effects of laser parameters and scanning strategy on structural and mechanical properties of 3D NiTi implants fabricated with selective laser melting[J]. Biomedizinische Technik, 58, 24042674(2013).

    [41] Li S, Hassanin H, Attallah M M et al. The development of TiNi-based negative Poisson’s ratio structure using selective laser melting[J]. Acta Materialia, 105, 75-83(2016).

    [42] Walker J, Haberland C, Andani M T et al. Process development and characterization of additively manufactured nickel-titanium shape memory parts[J]. Journal of Intelligent Material Systems and Structures, 27, 2653-2660(2016).

    [43] Khalil-Allafi J, Dlouhy A, Eggeler G. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations[J]. Acta Materialia, 50, 4255-4274(2002).

    [44] Elahinia M, Shayesteh Moghaddam N, Amerinatanzi A et al. Additive manufacturing of NiTiHf high temperature shape memory alloy[J]. Scripta Materialia, 145, 90-94(2018).

    [45] Shayesteh Moghaddam N, Saghaian S E, Amerinatanzi A et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting[J]. Materials Science and Engineering A, 724, 220-230(2018).

    [46] Khoo Z X, Liu Y, Low Z H et al. Fabrication of SLM NiTi shape memory alloy via repetitive laser scanning[J]. Shape Memory and Superelasticity, 4, 112-120(2018).

    [47] Xiong Z W, Li Z H, Sun Z et al. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect[J]. Journal of Materials Science & Technology, 35, 2238-2242(2019).

    [48] Pan A Q, Zhang H, Wang Z M. Process parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102007(2019).

    [49] Shahmir H, Nili-Ahmadabadi M, Naghdi F. Superelastic behavior of aged and thermomechanical treated NiTi alloy at Af + 10 ℃[J]. Materials & Design, 32, 365-370(2011).

    [50] Yuan B, Chung C Y, Zhu M. Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processing[J]. Materials Science and Engineering A, 382, 181-187(2004).

    [51] Abbasi-Chianeh V, Khalil-Allafi J. Influence of applying external stress during aging on martensitic transformation and the superelastic behavior of a Ni-rich NiTi alloy[J]. Materials Science and Engineering A, 528, 5060-5065(2011).

    [52] Prokofiev E A, Burow J A, Payton E J et al. Suppression of Ni4Ti3 precipitation by grain size refinement in Ni-rich NiTi shape memory alloys[J]. Advanced Engineering Materials, 12, 747-753(2010).

    [53] Abbasi-Chianeh V, Khalil-Allafi J, Kazemi-Choobi K. The effect of post-deformation aging on superelastic properties of Ni50.9Ti thin wires attaining micro and nano-substructure[J]. Journal of Alloys and Compounds, 563, 44-50(2013).

    [54] Michutta J, Carroll M C, Yawny A et al. Martensitic phase transformation in Ni-rich NiTi single crystals with one family of Ni4Ti3 precipitates[J]. Materials Science and Engineering A, 378, 152-156(2004).

    Hu Zehua, Song Changhui, Liu Linqing, Yang Yongqiang, Hu Ping. Research Progress of Selective Laser Melting of Nitinol[J]. Chinese Journal of Lasers, 2020, 47(12): 1202005
    Download Citation