• Photonics Research
  • Vol. 11, Issue 7, 1227 (2023)
Wangqi Mao1、2, Xinyu Gao3, Bo Li1、2, Yaqiang Zhang3, Pei Wang1, Hongxing Dong2、3、4、*, and Long Zhang1、2、3、5、*
Author Affiliations
  • 1Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
  • 2Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Hangzhou Institute for Advanced Study, Chinese Academy of Sciences, Hangzhou 310024, China
  • 4e-mail: hongxingd@siom.ac.cn
  • 5e-mail: lzhang@siom.ac.cn
  • show less
    DOI: 10.1364/PRJ.489700 Cite this Article Set citation alerts
    Wangqi Mao, Xinyu Gao, Bo Li, Yaqiang Zhang, Pei Wang, Hongxing Dong, Long Zhang. Randomized whispering-gallery-mode microdisk laser arrays via cavity deformations for anti-counterfeiting labels[J]. Photonics Research, 2023, 11(7): 1227 Copy Citation Text show less
    References

    [1] P. Aldhous. Murder by medicine. Nature, 434, 132-134(2005).

    [2] A. C. Boukis, K. Reiter, M. Frölich, D. Hofheinz, M. A. R. Meier. Multicomponent reactions provide key molecules for secret communication. Nat. Commun., 9, 1439(2018).

    [3] Fighting counterfeiting at the nanoscale. Nat. Nanotechnol., 14, 497(2019).

    [4] W. Ren, G. Lin, C. Clarke, J. Zhou, D. Jin. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv. Mater., 32, 1901430(2020).

    [5] Y. Liu, Y. Zheng, Y. Zhu, F. Ma, X. Zheng, K. Yang, X. Zheng, Z. Xu, S. Ju, Y. Zheng, T. Guo, L. Qian, F. Li. Unclonable perovskite fluorescent dots with fingerprint pattern for multilevel anticounterfeiting. ACS Appl. Mater. Interfaces, 12, 39649-39656(2020).

    [6] Y. Fan, C. Zhang, Z. Gao, W. Zhou, Y. Hou, Z. Zhou, J. Yao, Y. S. Zhao. Randomly induced phase transformation in silk protein-based microlaser arrays for anticounterfeiting. Adv. Mater., 33, 2102586(2021).

    [7] J. Bao, Z. Wang, C. Shen, R. Huang, C. Song, Z. Li, W. Hu, R. Lan, L. Zhang, H. Yang. Freestanding helical nanostructured chiro-photonic crystal film and anticounterfeiting label enabled by a cholesterol-grafted light-driven molecular motor. Small Methods, 6, 2200269(2022).

    [8] J. Lee, P. W. Bisso, R. L. Srinivas, J. J. Kim, A. J. Swiston, P. S. Doyle. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater., 13, 524-529(2014).

    [9] L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, S. Zhang. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [10] T. Zhang, Z. Shu, L. Zhang, Y. Chen, Z. Feng, Y. Hu, F. Huang, P. Wang, D. Li, Y. Yao, S. Sun, H. Duan. Random nanofracture-enabled physical unclonable function. Adv. Mater. Technol., 6, 2001073(2021).

    [11] Q. Li, F. Chen, J. Kang, J. Su, F. Huang, P. Wang, X. Yang, Y. Hou. Physical unclonable anticounterfeiting electrodes enabled by spontaneously formed plasmonic core–shell nanoparticles for traceable electronics. Adv. Funct. Mater., 31, 2010537(2021).

    [12] L. Jing, Q. Xie, H. Li, K. Li, H. Yang, P. L. P. Ng, S. Li, Y. Li, E. H. T. Teo, X. Wang, P. Y. Chen. Multigenerational crumpling of 2D materials for anticounterfeiting patterns with deep learning authentication. Matter, 3, 2160-2180(2020).

    [13] S. Y. Liang, Y. F. Liu, Z. K. Ji, H. Xia. Femtosecond laser ablation of quantum dot films toward physical unclonable multilevel fluorescent anticounterfeiting labels. ACS Appl. Mater. Interfaces, 15, 10986-10993(2023).

    [14] R. Arppe, T. J. Sørensen. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem., 1, 0031(2017).

    [15] D. N. Minh, L. A. T. Nguyen, Q. H. Nguyen, T. V. Vu, J. Choi, S. Eom, S. J. Kwon, Y. Kang. Synthesis of MAPbBr3-polymer composite films by photolysis of DMF: toward transparent and flexible optical physical unclonable functions (PUFs) with hierarchical multilevel complexity. Adv. Mater., 35, 2208151(2023).

    [16] M. S. Kim, G. J. Lee, J. W. Leem, S. Choi, Y. L. Kim, Y. M. Song. Revisiting silk: a lens-free optical physical unclonable function. Nat. Commun., 13, 247(2022).

    [17] R. Wang, K. Liang, S. Wang, Y. Cao, Y. Xin, Y. Peng, X. Ma, B. Zhu, H. Wang, Y. Hao. Printable epsilon-type structure transistor arrays with highly reliable physical unclonable functions. Adv. Mater., 35, 2210621(2023).

    [18] S. Lee, J. Kang, J. M. Kim, N. Kim, D. Han, T. Lee, S. Ko, J. Yang, S. Lee, S. Lee, D. Koh, M. G. Kang, J. Lee, S. Noh, H. Lee, J. Kwon, S. H. C. Baek, K.-J. Kim, B. G. Park. Spintronic physical unclonable functions based on field-free spin–orbit-torque switching. Adv. Mater., 34, 2203558(2022).

    [19] Y. Lu, H. Chen, H. Cheng, H. Qiu, C. Jiang, Y. Zheng. Plasmonic physical unclonable function labels based on tricolored silver nanoparticles: implications for anticounterfeiting applications. ACS Appl. Nano Mater., 5, 9298-9305(2022).

    [20] V. Caligiuri, A. Patra, M. P. De Santo, A. Forestiero, G. Papuzzo, D. M. Aceti, G. E. Lio, R. Barberi, A. De Luca. Hybrid plasmonic/photonic nanoscale strategy for multilevel anticounterfeit labels. ACS Appl. Mater. Interfaces, 13, 49172-49183(2021).

    [21] Z. Gan, F. Chen, Q. Li, M. Li, J. Zhang, X. Lu, L. Tang, Z. Wang, Q. Shi, W. Zhang, W. Huang. Reconfigurable optical physical unclonable functions enabled by VO2 nanocrystal films. ACS Appl. Mater. Interfaces, 14, 5785-5796(2022).

    [22] K. Chen, F. Huang, P. Wang, Y. Wan, D. Li, Y. Yao. Fast random number generator based on optical physical unclonable functions. Opt. Lett., 46, 4875-4878(2021).

    [23] Y. Wan, P. Wang, F. Huang, J. Yuan, D. Li, K. Chen, J. Kang, Q. Li, T. Zhang, S. Sun, Z. Qiu, Y. Yao. Bionic optical physical unclonable functions for authentication and encryption. J. Mater. Chem. C, 9, 13200-13208(2021).

    [24] Y. W. Hu, T. P. Zhang, C. F. Wang, K. K. Liu, Y. Sun, L. Li, C. F. Lv, Y. C. Liang, F. H. Jiao, W. B. Zhao, L. Dong, C. X. Shan. Flexible and biocompatible physical unclonable function anti-counterfeiting label. Adv. Funct. Mater., 31, 2102108(2021).

    [25] H. Liu, S. Wei, H. Qiu, B. Zhan, Q. Liu, W. Lu, J. Zhang, T. Ngai, T. Chen. Naphthalimide-based aggregation-induced emissive polymeric hydrogels for fluorescent pattern switch and biomimetic actuators. Macromol. Rapid Commun., 41, 2000123(2020).

    [26] J. Feng, W. Wen, X. Wei, X. Jiang, M. Cao, X. Wang, X. Zhang, L. Jiang, Y. Wu. Random organic nanolaser arrays for cryptographic primitives. Adv. Mater., 31, 1807880(2019).

    [27] M. Karl, J. M. E. Glackin, M. Schubert, N. M. Kronenberg, G. A. Turnbull, I. D. W. Samuel, M. C. Gather. Flexible and ultra-lightweight polymer membrane lasers. Nat. Commun., 9, 1525(2018).

    [28] Z. Gao, C. Wei, Y. Yan, W. Zhang, H. Dong, J. Zhao, J. Yi, C. Zhang, Y. J. Li, Y. S. Zhao. Covert photonic barcodes based on light controlled acidichromism in organic dye doped whispering-gallery-mode microdisks. Adv. Mater., 29, 1701558(2017).

    [29] Y. Bian, H. Xue, Z. Wang. Programmable random lasing pulses based on waveguide-assisted random scattering feedback. Laser Photon. Rev., 15, 2000506(2021).

    [30] X. Gong, Z. Qiao, Y. Liao, S. Zhu, L. Shi, M. Kim, Y. C. Chen. Enzyme-programmable microgel lasers for information encoding and anti-counterfeiting. Adv. Mater., 34, 2107809(2022).

    [31] K. Kim, S. Bittner, Y. Zeng, S. Guazzotti, O. Hess, Q. J. Wang, H. Cao. Massively parallel ultrafast random bit generation with a chip-scale laser. Science, 371, 948-952(2021).

    [32] D. Okada, Z.-H. Lin, J.-S. Huang, O. Oki, M. Morimoto, X. Liu, T. Minari, S. Ishii, T. Nagao, M. Irie, Y. Yamamoto. Optical microresonator arrays of fluorescence-switchable diarylethenes with unreplicable spectral fingerprints. Mater. Horiz., 7, 1801-1808(2020).

    [33] B. Duan, H. Zou, J. H. Chen, C. H. Ma, X. Zhao, X. Zheng, C. Wang, L. Liu, D. Yang. High-precision whispering gallery microsensors with ergodic spectra empowered by machine learning. Photon. Res., 10, 2343-2348(2022).

    [34] S. Zhang, Y. Li, P. Hu, Z. Tian, Q. Li, A. Li, Y. Zhang, F. Yun. Realization of directional single-mode lasing by a GaN-based warped microring. Photon. Res., 9, 432-438(2021).

    [35] S. Zhu, X. Ma, C. Liu, W. Luo, J. Liu, B. Shi, W. Guo, K. M. Lau. Controlled single-mode emission in quantum dot micro-lasers. Opt. Express, 29, 13193-13203(2021).

    [36] E. Lafalce, Q. Zeng, C. H. Lin, M. J. Smith, S. T. Malak, J. Jung, Y. J. Yoon, Z. Lin, V. V. Tsukruk, Z. V. Vardeny. Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point. Nat. Commun., 10, 561(2019).

    [37] R. Lu, J. L. Xiao, Y. D. Yang, H. Z. Weng, H. Long, B. X. Bo, Y. Z. Huang. Unidirectional emission cut-corner square microcavity lasers. IEEE J. Quantum Electron., 52, 2000105(2016).

    [38] Y. Zhong, K. Liao, W. Du, J. Zhu, Q. Shang, F. Zhou, X. Wu, X. Sui, J. Shi, S. Yue, Q. Wang, Y. Zhang, Q. Zhang, X. Hu, X. Liu. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: toward laser array application. ACS Nano, 14, 15605-15615(2020).

    [39] J. J. Li, J. Y. Ma, J. S. Hu, D. Wang, L. J. Wan. Influence of N,N-dimethylformamide annealing on the local electrical properties of organometal halide perovskite solar cells: an atomic force microscopy investigation. ACS Appl. Mater. Interfaces, 8, 26002-26007(2016).

    [40] J. Song, Y. Yang, Y. L. Zhao, M. Che, L. Zhu, X. Q. Gu, Y. H. Qiang. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell. Mater. Sci. Eng. B, 217, 18-25(2017).

    [41] W. Zhu, T. Yu, F. Li, C. Bao, H. Gao, Y. Yi, J. Yang, G. Fu, X. Zhou, Z. Zou. A facile, solvent vapor–fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells. Nanoscale, 7, 5427-5434(2015).

    [42] Z. Dang, Y. Luo, X.-S. Wang, M. Imran, P. Gao. Electron-beam-induced degradation of halide-perovskite-related semiconductor nanomaterials. Chin. Opt. Lett., 19, 030002(2021).

    [43] Z. Hu, Z. Liu, Z. Zhan, T. Shi, J. Du, X. Tang, Y. Leng. Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission. Adv. Photon., 3, 034002(2021).

    [44] C. Quan, X. Xing, S. Huang, M. Jin, T. Shi, Z. Zhang, W. Xiang, Z. Wang, Y. Leng. Nonlinear optical properties of CsPbClxBr3-x nanocrystals embedded glass. Photon. Res., 9, 1767-1774(2021).

    [45] Y. Yuan, G. Yan, R. Hong, Z. Liang, T. Kirchartz. Quantifying efficiency limitations in all-inorganic halide perovskite solar cells. Adv. Mater., 34, 2108132(2022).

    [46] S. Y. Liang, Y. F. Liu, S. Y. Wang, Z. K. Ji, H. Xia, B. F. Bai, H.-B. Sun. High-resolution patterning of 2D perovskite films through femtosecond laser direct writing. Adv. Funct. Mater., 32, 0224957(2022).

    [47] X. Tian, R. Wang, Y. Xu, Q. Lin, Q. Cao. Triangular micro-grating via femtosecond laser direct writing toward high-performance polarization-sensitive perovskite photodetectors. Adv. Opt. Mater., 10, 2200856(2022).

    [48] S. Y. Liang, Y. F. Liu, H. J. Zhang, Z. K. Ji, H. Xia. High-quality patterning of CsPbBr3 perovskite films through lamination-assisted femtosecond laser ablation toward light-emitting diodes. ACS Appl. Mater. Interfaces, 14, 46958-46963(2022).

    [49] W. Yang, L. Liu, D. Dong, X. Zhang, H. Lin, Y. Wang, H. Yang, Y. Gao, H. Zhong, B. Jia, K. Shi. Detour-phased perovskite ultrathin planar lens using direct femtosecond laser writing. Photon. Res., 10, 2768-2777(2022).

    [50] D. N. Wang. Review of femtosecond laser fabricated optical fiber high temperature sensors [Invited]. Chin. Opt. Lett., 19, 091204(2021).

    Wangqi Mao, Xinyu Gao, Bo Li, Yaqiang Zhang, Pei Wang, Hongxing Dong, Long Zhang. Randomized whispering-gallery-mode microdisk laser arrays via cavity deformations for anti-counterfeiting labels[J]. Photonics Research, 2023, 11(7): 1227
    Download Citation