• Journal of Inorganic Materials
  • Vol. 35, Issue 12, 1373 (2020)
Xingyuan ZHOU, Wei LIU*, Cheng ZHANG, Fuqiang HUA, Min ZHANG, Xianli SU, and Xinfeng TANG*
Author Affiliations
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.15541/jim20200135 Cite this Article
    Xingyuan ZHOU, Wei LIU, Cheng ZHANG, Fuqiang HUA, Min ZHANG, Xianli SU, Xinfeng TANG. Optimization of Thermoelectric Transport Properties of Nb-doped Mo1-xWxSeTe Solid Solutions[J]. Journal of Inorganic Materials, 2020, 35(12): 1373 Copy Citation Text show less
    References

    [1] D M ROWE. CRC Handbook of Thermoelectrics. Boca Raton: CRC Press(1995).

    [2] L E BELL. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).

    [3] Q H ZHANG, S Q BAI, L D CHEN. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 34, 279-293(2019).

    [4] L D CHEN, Z XIONG, S Q BAI. Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials, 25, 3-10(2010).

    [5] G J SNYDER, E S TOBERER. Complex thermoelectric materials. Nature Materials, 7, 105-114(2008).

    [6] K BISWAS, J Q HE, I D BLUM et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489, 414-418.

    [7] G J TAN, L D ZHAO, M G KANATZIDIS. Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 116, 12123-12149(2016).

    [8] X SU, P WEI, H LI et al. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications. Advanced Materials, 29, 1602013(2017).

    [9] B POUDEL, Q HAO, Y MA et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 320, 634-638(2008).

    [10] Y Z PEI, X SHI, A LALONDE et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66-69(2011).

    [11] H LI, X L SU, X F TANG et al. Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics. Journal of Materiomics, 3, 273-279(2017).

    [12] W LIU, X J TAN, K YIN et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Physical Review Letters, 108, 166601(2012).

    [13] W K HE, D Y WANG, H J WU et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science, 365, 1418-1424(2019).

    [14] C G FU, S Q BAI, Y T LIU et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nature Communications, 6, 1-7(2015).

    [15] X SHI, C SUN, Z BU et al. Revelation of inherently high mobility enables Mg3Sb2 as a sustainable alternative to n-Bi2Te3 thermoelectrics. Advanced Science, 6, 1802286(2019).

    [16] Q H WANG, K KALANTAR-ZADEH, A KIS et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7, 699(2012).

    [17] D WICKRAMARATNE, F ZAHID, R K LAKE. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. The Journal of Chemical Physics, 140, 124710(2014).

    [18] Z HUANG, T WU, S KONG et al. Enhancement of anisotropic thermoelectric performance of tungsten disulfide by titanium doping. Journal of Materials Chemistry A, 4, 10159-10165(2016).

    [19] S KONG, T WU, M YUAN et al. Dramatically enhanced thermoelectric performance of MoS2 by introducing MoO2 nanoinclusions. Journal of Materials Chemistry A, 5, 2004-2011(2017).

    [20] S KONG, T WU, W ZHUANG et al. Realizing p-type MoS2 with enhanced thermoelectric performance by embedding VMo2S4 nanoinclusions. The Journal of Physical Chemistry B, 122, 713-720(2018).

    [21] L RUAN, H ZHAO, D LI et al. Enhancement of thermoelectric properties of molybdenum diselenide through combined Mg intercalation and Nb doping. Journal of Electronic Materials, 45, 2926-2934(2016).

    [22] C ZHANG, Z LI, M ZHANG et al. Synergistically improved electronic and thermal transport properties in Nb-doped NbyMo1-ySe2-2xTe2x solid solutions due to alloy phonon scattering and increased valley degeneracy. ACS Applied Materials & Interfaces, 11, 26069-26081(2019).

    [23] C ZHANG, Z LI, M ZHANG et al. Impurity states in Mo1-xMxSe2 compounds doped with group VB elements and their electronic and thermal transport properties. Journal of Materials Chemistry C, 8, 619-629(2020).

    [24] N F MOTT, E A DAVIS, K WEISER. Electronic processes in non- crystalline materials. Physics Today, 25, 55(1972).

    Xingyuan ZHOU, Wei LIU, Cheng ZHANG, Fuqiang HUA, Min ZHANG, Xianli SU, Xinfeng TANG. Optimization of Thermoelectric Transport Properties of Nb-doped Mo1-xWxSeTe Solid Solutions[J]. Journal of Inorganic Materials, 2020, 35(12): 1373
    Download Citation