• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 1, 30 (2018)
JIN Xiang-Liang1、2, CAO Can1、2, and YANG Hong-Jiao1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.01.007 Cite this Article
    JIN Xiang-Liang, CAO Can, YANG Hong-Jiao. Design and implementation of high performance single-photon avalanche diode in 180 nm CMOS technology[J]. Journal of Infrared and Millimeter Waves, 2018, 37(1): 30 Copy Citation Text show less
    References

    [1] Betta G F D, Pancheri L, Stoppa D, et al. Avalanche Photodiodes in Submicron CMOS Technologies for High-Sensitivity Imaging[M], Advances in Photodiodes. InTech, 2011: 1253-1272.

    [2] Braga L H C. An8×16-pixel 92 k SPAD time-resolved sensor with on-pixel 64ps 12b TDC and 100 MS/s real-time energy histogramming in 0.13 μm CIS technology for PET/MRI applications[C]. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2013: 486-487.

    [3] Maruyama Y, Blacksberg J, Charbon E. A 1024×8700ps time-gated SPAD line sensor for laser Raman spectroscopy and LIBS in space and rover-based planetary exploration[J]. in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), 2013,2:110-111.

    [4] Zappa F, Lotito A, Giudice A C, et al. Monotithic active-quenching and active-reset circuit for single-photon avalanche detectors[J]. IEEE J. Solid-State Circuits, 2003, 38(7), pp. 1298-1301.

    [5] Mita R, Oliveri A, Palumbo G, et al. A novel model for single photon detectors[C]// IEEE International Conference on Electronics, Circuits and Systems. IEEE, 2008:1-4.

    [6] Zappa F, Ghioni M, Cova S, et al. An integrated active-quenching circuit for single-photon avalanches diodes[J]. IEEE Trans. Instrum. Meas., 2000, 49(6), 1167-1175.

    [7] Zappa F, Tisa S, Gulinatti A, et al. Monolithic CMOS detector module for photon counting and picosecond timing[J]. Solid-State Device Research Conf., September 2004, 341-344.

    [8] Haitz R H. Model for Electrical Behavior of a Microplasma[J]. J.Appl. Phys., 1964, 35(5), pp. 1370-1376.

    [9] Karami M A, Yoon H J, Charbon E. Single-photon Avalanche Diodes in sub-100 nm Standard CMOS Technologies[J]. Proc.intl.image Sensor Workshop, 2011, 28(11):1738-1752.

    [10] Chick S, Coath R, Sellahewa R, et al. Dead time compensation in CMOS single photon avalanche diodes with active quenching and external reset[J]. IEEE Trans. Electron Devices, 2014, 61(8):2725-2731.

    [11] Niclass C, Rochas A, Besse P A, et al. Design and characterization of a CMOS 3D image sensor based on single photon avalanche diodes[J]. IEEE J. Solid-State Circuits, 205,40(11): 1847-1854.

    [12] Mandai S. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology[J]. Opt. Express, 2012,20(6): 5849-5857.

    [13] Niclass C, Gersbach M, Henderson R, et al. A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4):863-869.

    [14] Sun, Pengfei, Charbon E, Ishihara R. A Flexible Ultrathin-Body Single-Photon Avalanche Diode With Dual-Side Illumination[J]. Selected Topics in Quantum Electronics IEEE Journal of 2014,20(6):276-283.

    JIN Xiang-Liang, CAO Can, YANG Hong-Jiao. Design and implementation of high performance single-photon avalanche diode in 180 nm CMOS technology[J]. Journal of Infrared and Millimeter Waves, 2018, 37(1): 30
    Download Citation