• Acta Photonica Sinica
  • Vol. 51, Issue 5, 0551303 (2022)
Renduo QI1, Yanfen ZHAI2, Wei ZHANG1、3、*, and Yidong HUANG1、3
Author Affiliations
  • 1Beijing National Research Center for Information Science and Technology(BNRist),Beijing Innovation Center for Future Chips,Frontier Science Center for Quantum Information,Electronic Engineering Department,Tsinghua University,Beijing 100084,China
  • 2Silicon Austria Labs GmbH,A 9524 Villach,Austria
  • 3Beijing Academy of Quantum Information Sciences,Beijing 100193,China
  • show less
    DOI: 10.3788/gzxb20225105.0551303 Cite this Article
    Renduo QI, Yanfen ZHAI, Wei ZHANG, Yidong HUANG. Chalcogenide Glass Nonlinear Integrated Optical Waveguide Fabrication by Hot Melt Smoothing and Micro-trench Filling(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551303 Copy Citation Text show less
    References

    [1] B J EGGLETON, C G POULTON, P T RAKICH et al. Brillouin integrated photonics. Nature Photonics, 13, 664-677(2019).

    [2] L CASPANI, C XIONG, B J EGGLETON et al. Integrated sources of photon quantum states based on nonlinear optics. Light: Science and Applications, 6, e17100(2017).

    [3] J LEUTHOLD, C KOOS, W FREUDE. Nonlinear silicon photonics. Nature Photonics, 4, 535-544(2010).

    [4] B J EGGLETON, B LUTHER-DAVIES, K RICHARDSON. Chalcogenide photonics. Nature Photonics, 5, 141-148(2011).

    [5] G DEVICES, M D PELUSI, V G TA et al. Applications of highly-nonlinear chalcogenide signal processing. IEEE Journal of Selected Topics in Quantum Electronics, 14, 529-539(2008).

    [6] M MERKLEIN, I V. KABAKOVA, T F S BÜTTNER et al. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nature Communications, 6, 1-8(2015).

    [7] Q DU, Z LUO, H ZHONG et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide. Photonics Research, 6, 506-510(2018).

    [8] A ZAKERY, S R ELLIOTT. Optical properties and applications of chalcogenide glasses: a review. Journal of Non-Crystalline Solids, 330, 1-12(2003).

    [9] B J EGGLETON, C G POULTON, R PANT. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Advances in Optics and Photonics, 5, 536-587(2013).

    [10] Z G LIAN, W PAN, D FURNISS et al. Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films. Optics Letters, 34, 1234-1236(2009).

    [11] D Y CHOI, S MADDEN, D BULLA et al. SU-8 protective layer in photo-resist patterning on As2S3 film. Physica Status Solidi C, 8, 318-3186(2011).

    [12] Y ZHAI, R QI, C YUAN et al. High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling. Applied Physics Express, 9, 052201(2016).

    [13] R QI, W ZHANG, Y HUANG. Nonlinear optical properties of chalcogenide glass waveguides fabricated by hot melt smoothing and micro-trench filling. Applied Physics Express, 13, 042005(2020).

    [14] Z HAN, P LIN, V SINGH et al. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Applied Physics Letters, 108, 141106(2016).

    [15] J L ADAM, L CALVEZ, J TROLÈS et al. Chalcogenide glasses for infrared photonics. International Journal of Applied Glass Science, 6, 287-294(2015).

    [16] H LIN, Y SONG, Y HUANG et al. Chalcogenide glass-on-graphene photonics. Nature Photonics, 11, 798-805(2017).

    [17] A POPTA, R DECORBY, C HAUGEN et al. Photoinduced refractive index change in As2Se3 by 633nm illumination. Optics Express, 10, 639-644(2002).

    [18] K TANAKA. Relation between photodarkening and photoexpansion in As2S3 glass. Physica Status Solidi B, 249, 2019-2023(2012).

    [19] M MITKOVA, M N KOZICKI, H C KIM et al. Thermal and photodiffusion of Ag in S-rich Ge-S amorphous films. Thin Solid Films, 449, 248-253(2004).

    [20] V LYUBIN, M KLEBANOV, M MITKOVA et al. Polarization-dependent, laser-induced anisotropic photocrystallization of some amorphous chalcogenide films. Applied Physics Letters, 71, 2118-2120(1997).

    [21] V G TA’EED, M SHOKOOH-SAREMI, L FU et al. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE Journal on Selected Topics in Quantum Electronics, 12, 360-369(2006).

    [22] H L BUTCHER, D G MACLACHLAN, D LEE et al. Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG2. Optics Express, 26, 10930-10943(2018).

    [23] J ZHU, T M HORNING, M ZOHRABI et al. Photo-induced writing and erasing of gratings in As2S3 chalcogenide microresonators. Optica, 7, 1645-1648(2020).

    [24] A V KOLOBOV, P FONS, A I FRENKEL et al. Understanding the phase-change mechanism of rewritable optical media. Nature Materials, 3, 703-708(2004).

    [25] J ZHENG, A KHANOLKAR, P XU et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Optical Materials Express, 8, 1551-1561(2018).

    [26] C RIOS, M STEGMAIER, P HOSSEINI et al. Integrated all-photonic non-volatile multi-level memory. Nature Photonics, 9, 725-732(2015).

    [27] P PITCHAPPA, A KUMAR, S PRAKASH et al. Chalcogenide phase change material for active terahertz photonics. Advanced Materials, 31, 1-7(2019).

    [28] A KARVOUNIS, B GHOLIPOUR, K F MACDONALD et al. All-dielectric phase-change reconfigurable metasurface. Applied Physics Letters, 109, 051103(2016).

    [29] W BOYDROBERT. Boyd nonlinear optics(2003).

    [30] M ASOBE, T KANAMORI, K NAGANUMA et al. Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers. Journal of Applied Physics, 77, 5518-5523(1995).

    [31] L B FU, M ROCHETTE, V G TA’EED et al. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. Optics Express, 13, 7637-7644(2005).

    [32] S J MADDEN, D Y CHOI, D A BULLA et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Optics Express, 15, 14414-14421(2007).

    [33] M R LAMONT, B LUTHER-DAVIES, D Y CHOI et al. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide. Optics Express, 16, 14938-14944(2008).

    [34] X GAI, S MADDEN, D CHOI et al. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W-1m-1 at 1550nm. Optics Express, 18, 18866-18874(2010).

    [35] M A FOSTER, A C TURNER, M LIPSON et al. Nonlinear optics in photonic nanowires. Optics Express, 16, 1300-1320(2008).

    [36] R PANT, C G POULTON, D CHOI et al. On-chip stimulated Brillouin scattering. Optics Express, 19, 8285-8290(2011).

    [37] N T OTTERSTROM, R O BEHUNIN, E A KITTLAUS et al. A silicon Brillouin laser. Science, 360, 1113-1116(2018).

    [38] M EICHENFIELD, J CHAN, R M CAMACHO et al. Optomechanical crystals. Nature, 462, 78-82(2009).

    [39] K FANG, M H MATHENY, X LUAN et al. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nature Photonics, 10, 489-496(2016).

    [40] P MA, D CHOI, Y YU et al. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared, 21, 29927-29937(2013).

    [41] J HU, V TARASOV, A AGARWAL et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Optics Express, 15, 2307-2314(2007).

    [42] W C TAN, M E SOLMAZ, J GARDNER et al. Optical characterization of a As2S3 thin films prepared by magnetron sputtering. Journal of Applied Physics, 107, 035524(2010).

    [43] C C HUANG, D W HEWAK, J V BADDING. Deposition and characterization of germanium sulphide glass planar waveguides. Optics Express, 12, 2501-2506(2004).

    [44] Y RUAN, W LI, R JARVIS et al. Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching. Optics Express, 12, 5140-5145(2004).

    [45] J F VIENS, C MENEGHINI, A VILLENEUVE et al. Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses. Journal of Lightwave Technology, 17, 1184-1191(1999).

    [46] W SHEN, P ZENG, Z YANG et al. Chalcogenide glass photonic integration for improved 2 μm optical interconnection. Photonics Research, 8, 1484-1490(2020).

    [47] R ZHANG, Z YANG, M ZHAO et al. High quality, high index-contrast chalcogenide microdisk resonators. Optics Express, 29, 17775-17783(2021).

    [48] M ZHAO, Z YANG, R ZHANG et al. High Q chalcogenide photonic crystal nanobeam cavities. IEEE Photonics Technology Letters, 33, 525-528(2021).

    [49] B SHEN, H LIN, F MERGET et al. Broadband couplers for hybrid silicon-chalcogenide glass photonic integrated circuits. Optics Express, 27, 13781-13792(2019).

    [50] Q DU, Y HUANG, J LI et al. Low-loss photonic device in Ge-Sb-S chalcogenide glass. Optics Letters, 41, 3090-3093(2016).

    [51] D Y CHOI, S MADDEN, D A BULLA et al. Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices. IEEE Photonics Technology Letters, 22, 495-497(2010).

    [52] J CHILES, M MALINOWSKI, A RAO et al. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching. Applied Physics Letters, 106, 111110(2015).

    [53] J HU, V TARASOV, N CARLIE et al. Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. Optics Express, 15, 11798-11807(2007).

    [54] J HU, N CARLIE, L PETIT et al. Demonstration of chalcogenide glass racetrack microresonators. Optics Letters, 33, 761-763(2008).

    [55] C LI, P GUO, W HUANG et al. Reverse-strip-structure Ge28Sb12Se60 chalcogenide glass waveguides prepared by micro-trench filling and lift-off. Journal of the Optical Society of America B, 37, 82-87(2020).

    [56] J HU, N N FENG, A AGARWAL et al. Optical loss reduction in HIC chalcogenide glass waveguides via thermal reflow, CTuO3(2009).

    [57] H KHAN, P K DWIVEDI, S ISLAM et al. Solution processing of chalcogenide glasses: A facile path towards functional integration. Optical Materials, 119, 111332(2021).

    [58] Y ZHA, P T LIN, L KIMERLING et al. Inverted-Rib chalcogenide waveguides by solution process. ACS Photonics, 1, 153-157(2014).

    [59] C TSAY, Y ZHA, C B ARNOLD. Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides. Optics Express, 18, 26744-26753(2010).

    [60] G C CHERN, I LAUKS, K H NORIAN. Spin-coated amorphous chalcogenide films: Photoinduced effects. Thin Solid Films, 123, 289-296(1985).

    [61] Y ZHA, S FINGERMAN, S J CANTRELL et al. Pore formation and removal in solution-processed amorphous arsenic sulfide films. Journal of Non-Crystalline Solids, 369, 11-16(2013).

    [62] T HAN, S MADDEN, D BULLA et al. Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography. Optics Express, 18, 19286-19291(2010).

    [63] Y ZOU, L MOREEL, H LIN et al. Solution processing and resist-free nanoimprint fabrication of thin film chalcogenide glass devices: Inorganic-organic hybrid photonic integration. Advanced Optical Materials, 2, 759-764(2014).

    [64] M R LOTZ, C R PETERSEN, C MARKOS et al. Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared. Optica, 5, 557-563(2018).

    [65] L LI, H LIN, S QIAO et al. Monolithically integrated stretchable photonics. Light: Science and Applications, 7, 17138(2018).

    [66] Y ZOU, D ZHANG, H LIN et al. High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates. Advanced Optical Materials, 2, 478-486(2014).

    [67] N HÔ, M C PHILLIPS, H QIAO et al. Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. Optics Letters, 31, 1860-1862(2006).

    [68] S LEVY, M KLEBANOV, A ZADOK. High-Q ring resonators directly written in As2S3 chalcogenide glass films. Photonics Research, 3, 63-67(2015).

    [69] Y ZHAI, R QI, C YUAN et al. Single-polarization waveguiding by low-index strips on the surface of chalcogenide glass film. IEEE Photonics Journal, 8, 1-9(2016).

    [70] M J COLLINS, A S CLARK, J HE et al. Low Raman-noise correlated photon-pair generation in a dispersion-engineered chalcogenide As2S3 planar waveguide. Optics Letters, 37, 3393-3395(2012).

    [71] M D PELUSI, F LUAN, S MADDEN et al. Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip. IEEE Photonics Technology Letters, 22, 3-5(2010).

    [72] C G POULTON, R PANT, B J EGGLETON. Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides. Journal of the Optical Society of America B, 30, 2657-2664(2013).

    [73] C G POULTON, R PANT, A BYRNES et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Optics Express, 20, 21235-21246(2012).

    [74] A BYRNES, R PANT, E LI et al. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering. Optics Express, 20, 18836-18854(2012).

    [75] R PANT, A BYRNES, C G POULTON et al. Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering. Optics Letters, 37, 969-971(2012).

    [76] I V. KABAKOVA, R PANT, D-YCHOI et al. Narrow linewidth Brillouin laser based on chalcogenide photonic chip. Optics Letters, 38, 3208-3211(2013).

    [77] H JIANG, D MARPAUNG, M PAGANI et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter. Optica, 3, 30-34(2016).

    [78] M MERKLEIN, B STILLER, K VU et al. A chip-integrated coherent photonic-phononic memory. Nature Communications, 8, 1-7(2017).

    [79] J SONG, X GUO, W PENG et al. Stimulated brillouin scattering in low-loss Ge25Sb10S65 chalcogenide waveguides. IEEE Journal of Lightwave Technology, 39, 5048-5053(2021).

    [80] B J EGGLETON, T D VO, R PANT et al. Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides. Laser and Photonics Reviews, 6, 97-114(2012).

    [81] S T M ADDEN, B A L U AVIES. Experimental demonstration of linearly polarized 2 - 10 μ m supercontinuum generation in a chalcogenide rib waveguide. Optics Letters, 41, 958-961(2016).

    [82] J HWANG, D G KIM, S HAN et al. Supercontinuum generation in As2S3 waveguides fabricated without direct etching. Optics Letters, 46, 2413-2416(2021).

    [83] J É TREMBLAY, M MALINOWSKI, K A RICHARDSON et al. Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides. Optics Express, 26, 21358-21363(2018).

    [84] Y ZHAI, C YUAN, R QI et al. Reverse ridge/slot chalcogenide glass waveguide with ultrabroadband flat and low dispersion. IEEE Photonics Journal, 7, 1-9(2015).

    [85] J CHAN, A H SAFAVI-NAEINI, J T HILL et al. Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 101, 081115(2012).

    [86] J GOMIS-BRESCO, D NAVARRO-URRIOS, M OUDICH et al. A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 5, 1-6(2014).

    [87] H REN, M H MATHENY, G S MACCABE et al. Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nature Communications, 11, 1-10(2020).

    [88] R QI, Q XU, N WU et al. Nonsuspended optomechanical crystal cavities using As2S3 chalcogenide glass. Photonics Research, 9, 893-898(2021).

    Renduo QI, Yanfen ZHAI, Wei ZHANG, Yidong HUANG. Chalcogenide Glass Nonlinear Integrated Optical Waveguide Fabrication by Hot Melt Smoothing and Micro-trench Filling(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551303
    Download Citation