• Journal of Semiconductors
  • Vol. 46, Issue 4, 041401 (2025)
Zhicheng Guan1, Hengyu Zhang2, and Guang Yang1,*
Author Affiliations
  • 1Department of Electrical and Electronic Engineering, Photonic Research Institute (PRI), Research Institute of Smart Energy (RISE), Research Institute for Advanced Manufacturing (RIAM), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
  • 2State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.1088/1674-4926/24100029 Cite this Article
    Zhicheng Guan, Hengyu Zhang, Guang Yang. Advances in perovskite lasers[J]. Journal of Semiconductors, 2025, 46(4): 041401 Copy Citation Text show less
    References

    [1] N G Park. Perovskite solar cells: An emerging photovoltaic technology. Mater Today, 18, 65(2015).

    [2] X Li, S Aftab, S Hussain et al. Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: Exploring the potential of mixed-dimensional integrations. J Mater Chem A, 12, 4421(2024).

    [3] X Y Xu, S F Liu, Y Kuai et al. Laser fabrication of multi-dimensional perovskite patterns with intelligent anti-counterfeiting applications. Adv Sci, 11, 2309862(2024).

    [4] G Grancini, M K Nazeeruddin. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat Rev Mater, 4, 4(2019).

    [5] M Ren, S Cao, J L Zhao et al. Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nanomicro Lett, 13, 163(2021).

    [6] M R Wang, Z F Shi, C B Fei et al. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat Energy, 8, 1229(2023).

    [7] X Y Xu, J Zhou, Z R Shi et al. Microwave-assisted in situ synthesis of low-dimensional perovskites within metal-organic frameworks for optoelectronic applications. Appl Mater Today, 40, 102418(2024).

    [8] L Zhang, C J Sun, T W He et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci Appl, 10, 61(2021).

    [9] D W Duan, C Y Ge, M Z Rahaman et al. Recent progress with one-dimensional metal halide perovskites: From rational synthesis to optoelectronic applications. NPG Asia Mater, 15, 8(2023).

    [10] D Tyagi, V Laxmi, N Basu et al. Recent advances in two-dimensional perovskite materials for light-emitting diodes. Discov Nano, 19, 109(2024).

    [11] C K Zhou, H R Lin, Q Q He et al. Low dimensional metal halide perovskites and hybrids. Mater Sci Eng R Rep, 137, 38(2019).

    [12] L X Zhang, L Y Mei, K Y Wang et al. Advances in the application of perovskite materials. Nano Micro Lett, 15, 177(2023).

    [13] R M Mahamood. Laser basics and laser material interactions. Laser metal deposition process of metals, alloys, and composite materials. Springer, 11(2018).

    [14] L Lei, Q Dong, K Gundogdu et al. Metal halide perovskites for laser applications. Adv Funct Mater, 31, 2010144(2021).

    [15] Q Zhang, Q Y Shang, R Su et al. Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold. Nano Lett, 21, 1903(2021).

    [16] C Z Ning. Semiconductor nanolasers and the size-energy-efficiency challenge: A review. Adv Photonics, 1, 014002(2019).

    [17] S W Eaton, A Fu, A B Wong et al. Semiconductor nanowire lasers. Nat Rev Mater, 1, 16028(2016).

    [18] M T Hill, M C Gather. Advances in small lasers. Nat Photonics, 8, 908(2014).

    [19] F A Ponce, D P Bour. Nitride-based semiconductors for blue and green light-emitting devices. Nature, 386, 351(1997).

    [20] A J C Kuehne, M C Gather. Organic lasers: Recent developments on materials, device geometries, and fabrication techniques. Chem Rev, 116, 12823(2016).

    [21] F Deschler, M Price, S Pathak et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett, 5, 1421(2014).

    [22] G C Xing, N Mathews, S S Lim et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 13, 476(2014).

    [23] P Liu, C L Gu, Q Liao. Electrically switchable amplified spontaneous emission from lead halide perovskite film. ACS Omega, 6, 34021(2021).

    [24] Q Wei, X J Li, C Liang et al. Recent progress in metal halide perovskite micro- and nanolasers. Adv Opt Mater, 7, 1900080(2019).

    [25] C Y Huang, C Zou, C Y Mao et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics, 4, 2281(2017).

    [26] H Cha, S Bae, H Jung et al. Single-mode distributed feedback laser operation in solution-processed halide perovskite alloy system. Adv Opt Mater, 5, 1700545(2017).

    [27] W Z Sun, Y L Liu, G Y Qu et al. Lead halide perovskite vortex microlasers. Nat Commun, 11, 4862(2020).

    [28] Z Y Wu, J Chen, Y Mi et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers. Adv Opt Mater, 6, 1800674(2018).

    [29] R Su, C Diederichs, J Wang et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 17, 3982(2017).

    [30] C Huang, C Zhang, S M Xiao et al. Ultrafast control of vortex microlasers. Science, 367, 1018(2020).

    [31] Z T Huang, C W Yin, Y H Hong et al. Hybrid plasmonic surface lattice resonance perovskite lasers on silver nanoparticle arrays. Adv Optical Mater, 9, 2100299(2021).

    [32] H C Lin, Y C Lee, C C Lin et al. Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process. Nanoscale, 14, 10075(2022).

    [33] I D W Samuel, G A Turnbull. Organic semiconductor lasers. Chem Rev, 107, 1272(2007).

    [34] H T Gu, H Y Xu, C Yang et al. Color-tunable lead halide perovskite single-mode chiral microlasers with exceptionally high glum. Nano Lett, 24, 13333(2024).

    [35] G Zhang, J Y Haw, H Cai et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat Photonics, 13, 839(2019).

    [36] Q Liu, Q Wei, H Ren et al. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat Commun, 14, 7179(2023).

    [37] X D Zhang, Y L Liu, J C Han et al. Chiral emission from resonant metasurfaces. Science, 377, 1215(2022).

    [38] X H Cao, S Y Xing, R C Lai et al. Low-threshold, external-cavity-free flexible perovskite lasers. Adv Funct Mater, 33, 2211841(2023).

    [39] C H Zhang, H Y Dong, C Zhang et al. Photonic skins based on flexible organic microlaser arrays. Sci Adv, 7, eabh3530(2021).

    [40] M Karl, J M E Glackin, M Schubert et al. Flexible and ultra-lightweight polymer membrane lasers. Nat Commun, 9, 1525(2018).

    [41] M Kędziora, A Opala, R Mastria et al. Predesigned perovskite crystal waveguides for room-temperature exciton-polariton condensation and edge lasing. Nat Mater, 23, 1515(2024).

    [42] C J Qin, A S D Sandanayaka, C Y Zhao et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 585, 53(2020).

    [43] M L De Giorgi, M Anni. Amplified spontaneous emission and lasing in lead halide perovskites: State of the art and perspectives. Appl Sci, 9, 4591(2019).

    [44] K Elkhouly, I Goldberg, X Zhang et al. Electrically assisted amplified spontaneous emission in perovskite light-emitting diodes. Nat Photonics, 18, 132(2024).

    [45] W T Xiong, W D Tang, G Zhang et al. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature, 633, 344(2024).