• Photonic Sensors
  • Vol. 9, Issue 3, 259 (2019)
Yuntuan FANG* and Xiaoxue LI
Author Affiliations
  • School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, China
  • show less
    DOI: 10.1007/s13320-018-0526-5 Cite this Article
    Yuntuan FANG, Xiaoxue LI. Sub-Nanometer Displacement Sensor Based on Coupling of Balanced Loss and Gain Cavities[J]. Photonic Sensors, 2019, 9(3): 259 Copy Citation Text show less
    References

    [1] H. I. Rasool, P. R. Wilkinson, A. Z. Steig, and J. K. Gimzewski, “A low noise all-fiber interferometer for high resolution frequency modulated atomic force microscopy,” The Review of Scientific Instruments, 2010, 81(2): 023703-1-023703-10.

    [2] B. K. Nowakowski, D. T. Smith, and S. T. Smith, “Highly compact fiber Fabry-Perot interferometer: a new instrument design,” The Review of Scientific Instruments, 2016, 87(11): 115102-1-115102-8.

    [3] F. G. Cervantes, L. Kumanchik, J. Pratt, and J. M. Taylor, “High sensitivity optomechanical reference accelerometer over 10 kHz,” Applied Physics Letters, 2014, 104: 221111-1-221111-5.

    [4] K. Peng, X. K. Liu, Z. R. Chen, Z. C. Yu, and H. J. Pu, “Sensing mechanism and error analysis of a capacitive long-range displacement nanometer sensor based on time grating,” IEEE Sensors Journal, 2017, 17(6): 1596-1607.

    [5] C. C. Wu, C. H. Liao, Y. Z. Chen, and J. S. Yang, “Common-path laser encoder with Littrow configuration,” Sensors & Actuators A: Physical, 2013, 193(4): 69-78.

    [6] X. L. Zhou and Q. X. Yu, “Wide-range displacement sensor based on fiber-optic Fabry-Perot interferometer for subnanometer measurement,” IEEE Sensors Journal, 2011, 11(7): 1602-1606.

    [7] C. Yang and S. O. Oyadiji, “Development of two-layer multiple transmitter fibre optic bundle displacement sensor and application in structural health monitoring,” Sensors and Actuators A: Physical, 2016, 244(15): 1-14.

    [8] Y. Yang, D. Tian, K. Chen, X. L. Zhou, Z. F. Gong, and Q. X. Yu, “A fiber-optic displacement sensor using the spectral demodulation method,” Journal of Lightwave Technology, 2018, 36(17): 3666-3671.

    [9] T. P. Dao, N. L. Ho, T. T. Nguyen, H. G. Le, P. T. Thang, H. T. Pham, et al., “Analysis and optimization of a micro-displacement sensor for compliant microgripper,” Microsystem Technologies, 2017, 23(12): 5375-5395.

    [10] T. P. Dao and S. C. Huang, “Design and analysis of a compliant micro-positioning platform with embedded strain gauges and viscoelastic damper,” Microsystem Technologies, 2016, 23(2): 441-456.

    [11] C. Yang and S. O. Oyadiji, “Theoretical and experimental study of self-reference intensity-modulated plastic fibre optic linear array displacement sensor,” Sensors & Actuators A: Physical, 2015, 222: 67-79.

    [12] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, et al., “Measurement technologies for precision positioning,” CIRP Annals, 2015, 64(2): 773-796.

    [13] A. J. Fleming, “A review of nanometer resolution position sensors-operation and performance,” Sensors and Actuators A: Physical, 2013, 190: 106-126.

    [14] T. Grotjohann, I. Testa, M. Leutenegger, H. Leutenegger, H. Bock, N. T. Urban et al., “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature, 2011, 478: 204-208.

    [15] J. Baxter, “Super-resolution imaging: beyond the limit,” Nature Photonics, 2012, 6(6): 273-275.

    [16] G. Doyen, D. Drakova, V. Mujica, and M. Scheffler, “Theory of the scanning tunneling microscope,” Physica Status Solidi, 1992, 131: 107-108.

    [17] S. T. Souza, E. J. S. Fonseca, C. Jacinto, N. G. C. Astrath, T. P. Rodrigues, and L. C. Malacarne, “Direct measurement of photo-induced nanoscale surface displacement in solids using atomic force microscopy,” Optical Materials, 2015, 48: 71-74.

    [18] L. Feng, R. E. Ganainy, and L. Ge, “Non-hermitian photonics based on parity–time symmetry,” Nature Photonics, 2017, 11: 752-762.

    [19] Z. J. Wong, Y. L. Xu, J. Kim, K. O′Brien, Y. Wang, L. Feng, et al., “Lasing and anti-lasing in a single cavity,” Nature Photonics, 2016, 10(12): 796-801.

    [20] H. Hodaei, A. U. Hassan, S. Wittek, H. G. Gracia, R. E. Ganainy, D. N. Christodoulides, et al., “Enhanced sensitivity at higher-order exceptional points,” Nature, 2017, 548: 187-191.

    [21] P. Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M. C. Cheng, R. E. Ganainy, et al., “Generalized parity-time symmetry condition for enhanced sensor telemetry,” Nature Electronics, 2018, 1: 297-304.

    [22] L. Chang, X. S. Jiang, S. Y. Hua, C. Yang, J. M. Wen, L. Jiang, et al., “Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators,” Nature Photonics, 2014, 8: 524-529.

    [23] Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Physical Review Letters, 2011, 106: 093902-1-093902-4.

    [24] L. Ge, Y. D. Chong, and A. D. Stone, “Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures,” Physical Review A, 2012, 85: 023802-1-023802-10.

    [25] W. L. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” Journal of Optics A: Pure and Applied Optics, 2006, 8(4): S87-S93.

    [26] P. Yeh, Optical waves in layered media. New York, USA: John Wiley & Sons, 2005: 1-416.

    Yuntuan FANG, Xiaoxue LI. Sub-Nanometer Displacement Sensor Based on Coupling of Balanced Loss and Gain Cavities[J]. Photonic Sensors, 2019, 9(3): 259
    Download Citation