• Laser & Optoelectronics Progress
  • Vol. 57, Issue 6, 060001 (2020)
Ziwen Wu, Xiaodong Qiu, and Lixiang Chen*
Author Affiliations
  • Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, Fujian 361005, China
  • show less
    DOI: 10.3788/LOP57.060001 Cite this Article Set citation alerts
    Ziwen Wu, Xiaodong Qiu, Lixiang Chen. Current Status and Prospect for Correlated Imaging Technique[J]. Laser & Optoelectronics Progress, 2020, 57(6): 060001 Copy Citation Text show less
    References

    [1] Hanbury Brown R, Twiss R Q. A test of a new type of Stellar interferometer on sirius[J]. Nature, 178, 1046-1048(1956).

    [2] Hanbury Brown R, Twiss R Q. Correlation between photons in two coherent beams of light[J]. Journal of Astrophysics and Astronomy, 177, 27-29(1956).

    [3] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?[J]. Physical Review, 47, 777-780(1935).

    [4] Klyshko D N. Two-photon light: influence of filtration and a new possible EPR experiment[J]. Physics Letters A, 128, 133-137(1988).

    [5] Ribeiro P H S, Pádua S et al. . Controlling the degree of visibility of Young's fringes with photon coincidence measurements[J]. Physical Review A, 49, 4176-4179(1994).

    [6] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).

    [7] Strekalov D V, Sergienko A V, Klyshko D N et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995).

    [8] Barbosa G A. Quantum images in double-slit experiments with spontaneous down-conversion light[J]. Physical Review A, 54, 4473-4478(1996).

    [9] Fonseca E J S, Monken C H, Pádua S. Measurement of the de Broglie wavelength of a multiphoton wave packet[J]. Physical Review Letters, 82, 2868-2871(1999).

    [10] Fonseca E J S, Souto Ribeiro P H, Pádua S et al. . Quantum interference by a nonlocal double slit[J]. Physical Review A, 60, 1530-1533(1999).

    [11] Boto A N, Kok P, Abrams D S et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit[J]. Physical Review Letters, 85, 2733-2741(2000).

    [12] D'Angelo M. Chekhova M V, Shih Y H. Two-photon diffraction and quantum lithography[J]. Physical Review Letters, 87, 013602(2001).

    [13] D'Angelo M. Valencia A, Rubin M H, et al. Resolution of quantum and classical ghost imaging[J]. Physical Review A, 72, 013810(2005).

    [14] Moreau P, Toninelli E, Morris P A et al. Resolution limits of quantum ghost imaging[J]. Optics Express, 26, 7528-7536(2018).

    [15] Abouraddy A F, Stone P R, Sergienko A V et al. Entangled-photon imaging of a pure phase object[J]. Physical Review Letters, 93, 213903(2004).

    [16] Kim Y H, Yu R, Shih Y H. Experimental realization of Popper's experiment: violation of uncertainty principle?[J]. Foundations of Physics, 29, 1849-1861(1999).

    [17] D'Angelo M. Kim Y H, Kulik S P, et al. Identifying entanglement using quantum ghost interference and imaging[J]. Physical Review Letters, 92, 233601(2004).

    [18] Jack B, Leach J, Romero J et al. Holographic ghost imaging and the violation of a bell inequality[J]. Physical Review Letters, 103, 083602(2009).

    [19] Aspden R S, Tasca D S, Boyd R W et al. EPR-based ghost imaging using a single-photon-sensitive camera[J]. New Journal of Physics, 15, 073032(2013).

    [20] Morris P A, Aspden R S. Bell J E C, et al. Imaging with a small number of photons[J]. Nature Communications, 6, 5913(2015).

    [21] Aspden R S, Morris P A, He R Q et al. Heralded phase-contrast imaging using an orbital angular momentum phase-filter[J]. Journal of Optics, 18, 055204(2016).

    [22] Rubin M H, Shih Y H. Resolution of ghost imaging for nondegenerate spontaneous parametric down-conversion[J]. Physical Review A, 78, 033836(2008).

    [23] Chan K W C, O'Sullivan M N, Boyd R W. Two-color ghost imaging[J]. Physical Review A, 79, 033808(2009).

    [24] Karmakar S, Shih Y H. Observation of two-color ghost imaging[J]. Proceedings of SPIE, 7702, 770204(2010).

    [25] Aspden R S, Gemmell N R, Morris P A et al. Photon-sparse microscopy: visible light imaging using infrared illumination[J]. Optica, 2, 1049-1052(2015).

    [26] Li Y Q, Yang H, Liu J et al. Colored object encoding scheme in ghost imaging system using orbital angular momentum[J]. Chinese Optics Letters, 11, 021104(2013). http://www.opticsjournal.net/Articles/Abstract?aid=OJ130123000013lRoUrX

    [27] Uribe-Patarroyo N, Fraine A, Simon D S et al. Object identification using correlated orbital angular momentum states[J]. Physical Review Letters, 110, 043601(2013).

    [28] Chen L X, Leach J, Jack B et al. High-dimensional quantum nature of ghost angular Young's diffraction[J]. Physical Review A, 82, 033822(2010).

    [29] Chen L X, Lei J J, Romero J. Quantum digital spiral imaging[J]. Light: Science & Applications, 3, e153(2014).

    [30] Wang K G, Cao D Z, Xiong J. Progress in correlated optics[J]. Physics, 37, 223-232(2008).

    [31] Cai Y J. Correlated imaging and its applications[J]. Journal of Sichuan Normal University(Natural Science), 41, 711-728(2018).

    [32] Li B, Fan H. Quantum correlation and its application[J]. Scientia Sinica(Informationis), 44, 360-369(2014).

    [33] Abouraddy A F. Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 87, 123602(2001).

    [34] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [35] Bennink R S, Bentley S J, Boyd R W et al. Quantum and classical coincidence imaging[J]. Physical Review Letters, 92, 033601(2004).

    [36] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004).

    [37] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [38] Gatti A, Brambilla E, Bache M et al. Correlated imaging, quantum and classical[J]. Physical Review A, 70, 013802(2004).

    [39] Valencia A, Scarcelli G. D'Angelo M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [40] Xiong J, Cao D Z, Huang F et al. Experimental observation of classical subwavelength interference with a pseudothermal light source[J]. Physical Review Letters, 94, 173601(2005).

    [41] Zhang M H, Wei Q, Shen X et al. Lensless Fourier-transform ghost imaging with classical incoherent light[J]. Physical Review A, 75, 021803(2007).

    [42] Shen X, Bai Y F, Qin T et al. Experimental investigation of quality of lensless ghost imaging with pseudo-thermal light[J]. Chinese Physics Letters, 25, 3968-3971(2008).

    [43] Cao D Z, Xiong J, Wang K G. Geometrical optics in correlated imaging systems[J]. Physical Review A, 71, 013801(2005).

    [44] Scarcelli G, Berardi V, Shih Y H. Phase-conjugate mirror via two-photon thermal light imaging[J]. Applied Physics Letters, 88, 061106(2006).

    [45] Basano L, Ottonello P. Experiment in lensless ghost imaging with thermal light[J]. Applied Physics Letters, 89, 091109(2006).

    [46] Zhang D, Zhai Y H, Wu L A et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005).

    [47] Zhai Y H, Chen X H, Zhang D et al. Two-photon interference with true thermal light[J]. Physical Review A, 72, 043805(2005).

    [48] Chen X H, Liu Q, Luo K H et al. Lensless ghost imaging with true thermal light[J]. Optics Letters, 34, 695-697(2009).

    [49] Meyers R, Deacon K S, Shih Y H. Ghost-imaging experiment by measuring reflected photons[J]. Physical Review A, 77, 041801(2008).

    [50] Karmakar S, Meyers R, Shih Y H. Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light[J]. Proceedings of SPIE, 8518, 851805(2012).

    [51] Liu X F, Chen X H, Yao X R et al. Lensless ghost imaging with sunlight[J]. Optics Letters, 39, 2314-2317(2014).

    [52] Bache M, Magatti D, Ferri F et al. Coherent imaging of a pure phase object with classical incoherent light[J]. Physical Review A, 73, 053802(2006).

    [53] Gong W L, Han S S. Phase-retrieval ghost imaging of complex-valued objects[J]. Physical Review A, 82, 023828(2010).

    [54] Zhang D J, Tang Q, Wu T F et al. Lensless ghost imaging of a phase object with pseudo-thermal light[J]. Applied Physics Letters, 104, 121113(2014).

    [55] Liu X F, Yao X R, Chen X H et al. Thermal light optical coherence tomography for transmissive objects[J]. Journal of the Optical Society of America A, 29, 1922-1926(2012).

    [56] Magaña-Loaiza O S, Mirhosseini M, Cross R M et al. . Hanbury Brown and Twiss interferometry with twisted light[J]. Science Advances, 2, e1501143(2016).

    [57] Gao L. Hashemi Rafsanjani S M, Zhou Y Y, et al. Distributed angular double-slit interference with pseudo-thermal light[J]. Applied Physics Letters, 110, 071107(2017).

    [58] Yang Z. Magaña-Loaiza O S, Mirhosseini M, et al. Digital spiral object identification using random light[J]. Light: Science & Applications, 6, e17013(2017).

    [59] Xiao K, Gao L, Song H Q et al. Non-local orientation filtered imaging with incoherent light source[J]. Optics Express, 26, 29401-29410(2018).

    [60] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [61] Erkmen B I, Shapiro J H. Ghost imaging: from quantum to classical to computational[J]. Advances in Optics and Photonics, 2, 405-450(2010).

    [62] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).

    [63] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [64] Hardy N D, Shapiro J H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging[J]. Physical Review A, 87, 023820(2013).

    [65] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013).

    [66] Welsh S S, Edgar M P, Bowman R et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 21, 23068-23074(2013).

    [67] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).

    [68] Edgar M P, Sun M J, Gibson G M et al. Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera[J]. Proceedings of SPIE, 9922, 99221B(2016).

    [69] Devaux F, Moreau P A, Denis S et al. Computational temporal ghost imaging[J]. Optica, 3, 698-701(2016).

    [70] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 13, 13-20(2019).

    [71] Padgett M J, Boyd R W. An introduction to ghost imaging: quantum and classical[J]. Philosophical Transactions of the Royal Society A: Mathematical physical and Engineering Sciences, 375, 20160233(2017).

    [72] Liu H L, Shen X, Zhu D M et al. Fourier-transform ghost imaging with pure far-field correlated thermal light[J]. Physical Review A, 76, 053808(2007).

    [73] Gong W L, Zhang P L, Shen X et al. Ghost “pinhole” imaging in Fraunhofer region[J]. Applied Physics Letters, 95, 071110(2009).

    [74] Gong W L, Han S S. Lens ghost imaging with thermal light: from the far field to the near field[J]. Physics Letters A, 374, 3723-3725(2010).

    [75] Shih Y H. Quantum imaging, quantum lithography and the uncertainty principle[J]. The European Physical Journal D, 22, 485-493(2003).

    [76] Scarcelli G, Berardi V, Shih Y H. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?[J]. Physical Review Letters, 96, 063602(2006).

    [77] Shih Y H. The physics of ghost imaging[M]. //Cohen L, Poor H, Scully M. Classical, semi-classical and quantum noise. Boston, MA: Springer, 169-222(2011).

    [78] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 11, 949-993(2012).

    [79] Shih Y H. The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?[J]. Quantum Information Processing, 11, 995-1001(2012).

    [80] Shapiro J H, Boyd R W. Response to “The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?”[J]. Quantum Information Processing, 11, 1003-1011(2012).

    [82] Cheng J. Ghost imaging through turbulent atmosphere[J]. Optics Express, 17, 7916-7921(2009).

    [83] Meyers R E, Deacon K S, Shih Y H. Turbulence-free ghost imaging[J]. Applied Physics Letters, 98, 111115(2011).

    [84] Cai Y J, Zhu S Y. Ghost interference with partially coherent radiation[J]. Optics Letters, 29, 2716-2718(2004).

    [85] Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Physical Review E, 71, 056607(2005).

    [86] Cai Y J, Wang F. Lensless imaging with partially coherent light[J]. Optics Letters, 32, 205-207(2007).

    [87] Ou L H, Kuang L M. Ghost imaging with third-order correlated thermal light[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 40, 1833-1844(2007).

    [88] Bai Y F, Han S S. Ghost imaging with thermal light by third-order correlation[J]. Physical Review A, 76, 043828(2007).

    [89] Cao D Z, Xiong J, Zhang S H et al. Enhancing visibility and resolution in Nth-order intensity correlation of thermal light[J]. Applied Physics Letters, 92, 201102(2008).

    [90] Chen X H, Agafonov I N, Luo K H et al. High-visibility, high-order lensless ghost imaging with thermal light[J]. Optics Letters, 35, 1166-1168(2010).

    [91] Moreau P A, Toninelli E, Gregory T et al. Ghost imaging using optical correlations[J]. Laser & Photonics Reviews, 12, 1700143(2018).

    [92] Zhang D J, Li H G, Zhao Q L et al. Wavelength-multiplexing ghost imaging[J]. Physical Review A, 92, 013823(2015).

    [93] Zerom P. Chan K W C, Howell J C, et al. Entangled-photon compressive ghost imaging[J]. Physical Review A, 84, 061804(2011).

    [94] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [95] Sun B Q, Welsh S S, Edgar M P et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).

    [96] Luo K H, Huang B Q, Zheng W M et al. Nonlocal imaging by conditional averaging of random reference measurements[J]. Chinese Physics Letters, 29, 074216(2012).

    [97] Li M F, Zhang Y R, Luo K H et al. Time-correspondence differential ghost imaging[J]. Physical Review A, 87, 033813(2013).

    [98] Li M F, Zhang Y R, Liu X F et al. A double-threshold technique for fast time-correspondence imaging[J]. Applied Physics Letters, 103, 211119(2013).

    [99] Zhao S M, Zhuang P. Correspondence normalized ghost imaging on compressive sensing[J]. Chinese Physics B, 23, 054203(2014).

    [100] Sun M J, Li M F, Wu L A. Nonlocal imaging of a reflective object using positive and negative correlations[J]. Applied Optics, 54, 7494-7499(2015).

    [101] Wang L, Zhao S M. Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform[J]. Photonics Research, 4, 240-244(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ161223000457SpVrYu

    [102] Xue C B, Yao X R, Liu X F et al. Improving the signal-to-noise ratio of complementary compressive imaging with a threshold[J]. Optics Communications, 393, 118-122(2017).

    [103] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).

    [104] Altmann Y, McLaughlin S, Padgett M Jet al. Quantum-inspired computational imaging[J]. 361(6403): eaat2298(2018).

    [105] He Y C, Wang G, Dong G X et al. Ghost imaging based on deep learning[J]. Scientific Reports, 8, 6469(2018).

    [106] Gao L, Zhang S H, Xiong J et al. Correlated imaging with one-photon interference[J]. Physical Review A, 80, 021806(2009).

    [107] Zhang S H, Gao L, Xiong J et al. Spatial interference: from coherent to incoherent[J]. Physical Review Letters, 102, 073904(2009).

    [108] Gan S, Cao D Z, Wang K G. Dark quantum imaging with fermions[J]. Physical Review A, 80, 043809(2009).

    [109] Luo K H, Chen X H, Liu Q et al. Nonlocal Talbot self-imaging with incoherent light[J]. Physical Review A, 82, 033803(2010).

    [110] Song X B, Xiong J, Zhang X D et al. Second-order Talbot self-imaging with pseudothermal light[J]. Physical Review A, 82, 033823(2010).

    [111] Song X B, Wang H B, Xiong J et al. Experimental observation of quantum Talbot effects[J]. Physical Review Letters, 107, 033902(2011).

    [112] Yu H, Lu R H, Han S S et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [113] Pelliccia D, Rack A, Scheel M et al. Experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [114] Zhang A X, He Y H, Wu L A et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018).

    [115] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).

    [116] Yan Y Q, Zhao C Q, Xu W D et al. Research on the terahertz active ghost imaging technology[J]. Chinese Journal of Lasers, 45, 0814001(2018).

    [117] Ryczkowski P, Barbier M, Friberg A T et al. Ghost imaging in the time domain[J]. Nature Photonics, 10, 167-170(2016).

    [118] Khakimov R I, Henson B M, Shin D K et al. Ghost imaging with atoms[J]. Nature, 540, 100-103(2016).

    [119] Zhou C, Liu B, Huang H Y et al. Effect of scattering medium on multi-wavelength color object correlated imaging[J]. Laser & Optoelectronics Progress, 53, 101102(2016).

    [120] Liang Z Y, Fan X, Cheng Z D et al. High-order thermo-optic ghost imaging for a tangential moving target[J]. Laser & Optoelectronics Progress, 53, 081102(2016).

    [121] Tan Z J, Yu H, Lu R H et al. Study on Fourier-transform ghost imaging with partially coherent X-ray[J]. Acta Optica Sinica, 37, 0411001(2017).

    [122] Pan L, Deng C J, Gong W L et al. Influence of chirped-amplitude correlated imaging under incoherent detection[J]. Acta Optica Sinica, 38, 1011001(2018).

    [123] Chen Y, Fan X, Cheng Y B et al. Compressive sensing ghost imaging based on neighbor similarity[J]. Acta Optica Sinica, 38, 0711001(2018).

    [124] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).

    [125] Chen M L, Li E R, Gong W L et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics and Photonics Journal, 3, 83-85(2013).

    [126] Gong W L, Zhao C Q, Yu H et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).

    [127] Clemente P, Durán V, Torres-Company V et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010).

    [128] Kong L J, Li Y N, Qian S X et al. Encryption of ghost imaging[J]. Physical Review A, 88, 013852(2013).

    [129] Chen W, Chen X D. Ghost imaging for three-dimensional optical security[J]. Applied Physics Letters, 103, 221106(2013).

    [130] Nasr M B, Goode D P, Nguyen N et al. Quantum optical coherence tomography of a biological sample[J]. Optics Communications, 282, 1154-1159(2009).

    [131] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [132] Qiu X D, Zhang D K, Zhang W H et al. Structured-pump-enabled quantum pattern recognition[J]. Physical Review Letters, 122, 123901(2019).

    [133] Phillips D B, Sun M J, Taylor J M et al. Adaptive foveated single-pixel imaging with dynamic supersampling[J]. Science Advances, 3, e1601782(2017).

    Ziwen Wu, Xiaodong Qiu, Lixiang Chen. Current Status and Prospect for Correlated Imaging Technique[J]. Laser & Optoelectronics Progress, 2020, 57(6): 060001
    Download Citation