• Laser & Optoelectronics Progress
  • Vol. 54, Issue 12, 120004 (2017)
Zhu Yu, Shi Lei*, Wei Jiahua, Xue Yang, and Luo Junwen
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.120004 Cite this Article Set citation alerts
    Zhu Yu, Shi Lei, Wei Jiahua, Xue Yang, Luo Junwen. Progress in Mobile Quantum Key Distribution Technique[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120004 Copy Citation Text show less
    References

    [1] Rosenberg D, Peterson C G, Harrington J W, et al. Practical long-distance quantum key distribution system using decoy levels[J]. New Journal of Physics, 2009, 11(4): 045009.

    [2] Yin H L, Chen T Y, Yu Z W, et al. Measurement device independent quantum key distribution over 404 km optical fibre[J]. Physical Review Letters, 2016, 117(19): 190501.

    [3] Wang J Y, Yang B, Liao S K, et al. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution[J]. Nature Photonics, 2012, 7(5): 387-393.

    [4] Nauerth S, Moll F, Rau M, et al. Air to ground quantum key distribution[C]. SPIE, 2012, 8518: 85180D.

    [5] Bourgoin J P, Higgins B L, Gigov N, et al. Free-space quantum key distribution to a moving receiver[J]. Optics Express, 2015, 23(26): 33437-33447.

    [6] Raska M. China′s quantum satellite experiments: strategic and military implications[EB/OL]. (2016-09-05)[2017-03-20]. http://www.rsis.edu.sg/rsis-publication/rsis/co16223-chinas-quantum-satellite-experiments-strategic-and-military-implications/

    [7] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343): 1140-1144.

    [8] Zhou Qiang, Liu Jinlu, Gu Yuanhui, et al. Gain-switched semiconductor pulsed laser for quantum secure communication[J]. Chinese J Lasers, 2016, 43(5): 0502005.

    [9] Beveratos A, Brouri R, Gacoin T, et al. Single photon quantum cryptography[J]. Physical Review Letters, 2002, 89(18): 187901.

    [10] Liu Y, Siyushev P, Rong Y, et al. Investigation of the silicon vacancy color center for quantum key distribution[J]. Optics Express, 2015, 23(26): 32961-32967.

    [11] Lounis B, Moerner W E. Single photons on demand from a single molecule at room temperature[J]. Nature, 2000, 407(6803): 491-493.

    [12] Zhu S E, Kuang Y M, Geng F, et al. Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence[J]. Journal of the American Chemical Society, 2013, 135(42): 15794-15800.

    [13] Michler P, Imamoglu A, Mason M D, et al. Quantum correlation among photons from a single quantum dot at room temperature[J]. Nature, 2000, 406(6799): 968-970.

    [14] Stevenson R M, Young R J, Atkinson P, et al. A semiconductor source of triggered entangled photon pairs[J]. Nature, 2006, 439(7073): 179-182.

    [15] He Y M, He Y, Wei Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability[J]. Nature Nanotechnology, 2013, 8(3): 213-217.

    [16] Li Ting, Ma Xiaolong, Li Fu, et al. Stray light analysis and test of Cassegrain optical antenna[J]. Acta Photonica Sinica, 2015, 44(8): 0806002.

    [17] Hu Xiaodong, Ding Xiaokun, Wang Weike, et al. Stray radiation suppression of horseshoe Cassegrain reflecting optical system for star sensor[J]. Journal of Chinese Inertial Technology, 2016, 24(2): 175-179.

    [18] Yan Peipei, Fan Xuewu. Design of optical system of very high precision star sensor with small F-number[J]. Laser & Optoelectronics Progress, 2011, 48(9): 092202.

    [19] Xue Qingsheng. Optical design and stray light analysis for large aperture catadioptric star sensor[J]. Acta Optica Sinica, 2016, 36(2): 0222001.

    [20] Townes S A, Edwards B L, Biswas A, et al. The mars laser communication demonstration[C]. IEEE Aerospace Conference Proceedings, 2004, 2: 1180-1195.

    [21] Jono T, Takayama Y, Kura N, et al. OICETS on-orbit laser communication experiments[C]. SPIE, 2006, 6105: 610503.

    [22] Fields R, Lunde C, Wong R, et al. NFIRE-to-TerraSAR-X laser communication results: satellite pointing, disturbances, and other attributes consistent with successful performance[C]. SPIE, 2009, 7330: 73300Q.

    [23] Zhang Hui, Chen Yunshan, Geng Tianwen, et al. Study on main factors affecting position detection accuracy of four-quadrant detector[J]. Chinese J Lasers, 2015, 42(12): 1217002.

    [24] Zhang Junqiang, Xie Fei, Xue Qingsheng, et al. Laser guided lens based on four-quadrant detector[J]. Chinese Optics, 2015, 8(3): 471-479.

    [25] Tan Liying, Wu Shichen, Han Qiqi, et al. Coarse tracking of periscope-type satellite optical communication terminals[J]. Optics and Precision Engineering, 2012, 20(2): 270-276.

    [26] Liu Yanfei, Dai Yonghong, Shan Xin, et al. Analysis of the impact of high frame frequency CMOS camera on optical communication fine tracking system[J]. Chinese Journal of Scientific Instrument, 2015, 36(6): 1319-1325.

    [27] Cheng Zhi, Dong Dengfeng, Zhou Weihu, et al. High precision laser position detecting system based on position sensitive device[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081202.

    [28] Wang Xiajing, Zheng Peixiang, Li Chao, et al. A vibration measuring method based on phase detection by position sensitive detector[J]. Journal of Optoelectronics·Laser, 2014, 25(9): 1765-1770.

    [29] Cao Hongrui, Liu Yongkai, Zhang Shumei. Adaptive control algorithm research based on fast steering mirror[J]. Transducer and Microsystem Technologies, 2017, 36(1): 16-19.

    [30] Cui Ning, Chen Xinglin, Cao Kairui, et al. Fuzzy active disturbance rejection control of fine tracking system for free space optical communication[J]. Optics and Precision Engineering, 2015, 23(5): 1394-1400.

    [31] Hu Zhen, Jiang Huilin, Tong Shoufeng. Improvement of ATP system tracking performance of laser communication using sliding mode control[J]. Transactions of Beijing Institute of Technology, 2012, 32(5): 522-525.

    [32] Wei Qiang, Zhang Chengjin, Zhang Dong, et al. Neural network control for piezo-actuator using sliding-mode technique[J]. Optics and Precision Engineering, 2012, 20(5): 1055-1063.

    [33] Liang Jie, Chen Li.Dynamics modeling for free-floating space-based robot during satellite capture and RBF neural network control for compound body stable movement[J]. Acta Aeronautica Et Astronautica Sinica, 2013, 34(4): 970-978.

    [34] Kuang C, Feng Q, Zhang B, et al. A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module[J]. Sensors and Actuators A, 2005, 125(1): 100-108.

    [35] Luo D, Kuang C, Hao X, et al. High-precision laser alignment technique based on spiral phase plate[J]. Optics and Lasers in Engineering, 2012, 50(7): 944-949.

    [36] Huang Xiangdong, Yu Wenbo, Tan Jiubin. Study on real-time compensation method for laser drift in 2D displacement measurement[J]. Journal of Optoelectronics·Laser, 2014, 25(2): 299-304.

    [37] Zhang L, Wang R, Lin W, et al. Compensation method for random drifts of laser beams based on moving average feedback control[C]. SPIE, 2012, 8417: 84170Q.

    [38] Li Jiean, Tan Jiubin, Cui Jiwen. Study on method of feedback compensation drift of collimation beam based on filter[J]. Journal of Optoelectronics·Laser, 2013, 24(2): 336-342.

    [39] Zhao Hao, Shen Yifeng, Zhang Zhongjie. Collimating emission from photonic crystals based on the quasi-zero-effective-index[J]. Acta Physica Sinica, 2014, 63(17): 174204.

    [40] Buttler W T, Hughes R J, Kwiat P G, et al. Free-space quantum-key distribution[J]. Physical Review A, 1998, 57(4): 2379.

    [41] Toyoshima M, Takayama Y, Kunimori H, et al. Development of the polarization tracking scheme for free-space quantum cryptography[C]. SPIE, 2008, 6951: 69510I.

    [42] Chen J, Wu G, Li Y, et al. Active polarization stabilization in optical fibers suitable for quantum key distribution[J]. Optics Express, 2007, 15(26): 17928-17936.

    [43] Ma L, Tang X. Polarization recovery and auto-compensation in quantum key distribution network[C]. SPIE, 2006, 6305: 630513.

    [44] Chen J, Wu G, Xu L, et al. Stable quantum key distribution with active polarization control based on time-division multiplexing[J]. New Journal of Physics, 2009, 11(6): 065004.

    [45] Xavier G B, Walenta N, De Faria G V, et al. Experimental polarization encoded quantum key distribution over optical fibers with real-time continuous birefringence compensation[J]. New Journal of Physics, 2009, 11(4): 045015.

    [46] Miao E L, Han Z F, Gong S S, et al. Background noise of satellite-to-ground quantum key distribution[J]. New Journal of Physics, 2005, 7(1): 215.

    [47] Feng Bin, Shi Zelin, Xu Baoshu, et al. Performance characterization and design of wire grid polarizer applied to airlight rejection[J]. Acta Optica Sinica, 2015, 35(12): 1201003.

    [48] Vallone G, Bacco D, Dequal D, et al. Experimental satellite quantum communications[J]. Physical Review Letters, 2015, 115(4): 040502.

    CLP Journals

    [1] Song Peishuai, Ma Jing, Ma Zhe, Zhang Shuyuan1, Si Chaowei, Han Guowei, Ning Jin, Yang Fuhua, Wang Xiaodong. Research and Development Status of Quantum Navigation Technology[J]. Laser & Optoelectronics Progress, 2018, 55(9): 90003

    [2] Yefeng He, Dongqi Li, Chang Song, Jianguo Gao. Quantum Key Distribution Protocol Based on Odd Coherent Sources and Orbital Angular Momentum[J]. Chinese Journal of Lasers, 2018, 45(7): 0712001

    Zhu Yu, Shi Lei, Wei Jiahua, Xue Yang, Luo Junwen. Progress in Mobile Quantum Key Distribution Technique[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120004
    Download Citation