• Laser & Optoelectronics Progress
  • Vol. 57, Issue 1, 012701 (2020)
Zhiyuan Yang, Yating Shao, Quanying Wu, and Xiang Hao*
Author Affiliations
  • College of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
  • show less
    DOI: 10.3788/LOP57.012701 Cite this Article Set citation alerts
    Zhiyuan Yang, Yating Shao, Quanying Wu, Xiang Hao. Long-Range Quantum Coherenceand Quantum Phase Transition in Atom-Microcavity Coupled System[J]. Laser & Optoelectronics Progress, 2020, 57(1): 012701 Copy Citation Text show less
    References

    [1] Amico L, Fazio R, Osterloh A et al. Entanglement in many-body systems[J]. Reviews of Modern Physics, 80, 517-576(2008).

    [2] Hillery M. Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation[J]. Physical Review A, 93, 012111(2016).

    [3] Imran M, Tariq H. Rameez-ul-islam, et al. Doubly tagged delayed-choice tunable quantum eraser: coherence, information and measurement[J]. Laser Physics Letters, 15, 015205(2018).

    [4] Zhang G Q, Xu J B. Quantum coherence of an XY spin chain with Dzyaloshinskii-Moriya interaction and quantum phase transition[J]. Journal of Physics A: Mathematical and Theoretical, 50, 265303(2017).

    [5] He Y F, Yang H J, Wang D et al. Quantum key distribution based on heralded pair coherent state and orbital angular momentum[J]. Acta Optica Sinica, 39, 0427001(2019).

    [6] Baumgratz T, Cramer M, Plenio M. Quantifying coherence[J]. Physical Review Letters, 113, 140401(2014).

    [7] Shi X, Yuan H, Mao X et al. Robust quantum state transfer inspired by Dzyaloshinskii-Moriya interactions[J]. Physical Review A, 95, 052332(2017).

    [8] Zhang Y Z, Yan T M, Jiang Y H. Ultrafast mapping of coherent dynamics and density matrix reconstruction in a terahertz-assisted laser field[J]. Physical Review Letters, 121, 113201(2018).

    [9] Chitambar E, Streltsov A, Rana S et al. Assisted distillation of quantum coherence[J]. Physical Review Letters, 116, 070402(2016).

    [10] Bloch I. Quantum coherence and entanglement with ultracold atoms in optical lattices[J]. Nature, 453, 1016-1022(2008).

    [11] Buluta I, Ashhab S, Nori F. Natural and artificial atoms for quantum computation[J]. Reports on Progress in Physics, 74, 104401(2011).

    [12] Hanson R, Kouwenhoven L P, Petta J R et al. Spins in few-electron quantum dots[J]. Reviews of Modern Physics, 79, 1217-1265(2007).

    [13] Jaksch D, Bruder C, Cirac J I et al. Cold bosonic atoms in optical lattices[J]. Physical Review Letters, 81, 3108-3111(1998).

    [14] Greiner M, Mandel O, Esslinger T et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 415, 39-44(2002).

    [15] Yu Z F, Chai X D, Xue J K. Energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice[J]. Physics Letters A, 382, 1231-1237(2018).

    [16] Flottat T, Hébert F et al. Phase diagram of bosons in a two-dimensional optical lattice with infinite-range cavity-mediated interactions[J]. Physical Review B, 95, 144501(2017).

    [17] Hartmann M J. Brandão F G S L, Plenio M B. Effective spin systems in coupled microcavities[J]. Physical Review Letters, 99, 160501(2007).

    [18] Chen Z X, Zhou Z W, Zhou X X et al. Quantum simulation of Heisenberg spin chains with next-nearest-neighbor interactions in coupled cavities[J]. Physical Review A, 81, 022303(2010).

    [19] Porras D, Cirac J I. Effective quantum spin systems with trapped ions[J]. Physical Review Letters, 92, 207901(2004).

    [20] James D F V. Quantum computation with hot and cold ions: an assessment of proposed schemes[J]. Fortschritte der Physik, 48, 823-837(2000).

    [21] Barouch E. McCoy B M, Dresden M. Statistical mechanics of the XY Model. I[J]. Physical Review A, 2, 1075-1092(1970).

    [22] Cai J M, Zhou Z W, Guo G C. Robustness of entanglement as a signature of quantum phase transitions[J]. Physics Letters A, 352, 196-201(2006).

    [23] Horodecki R, Horodecki P, Horodecki M et al. Quantum entanglement[J]. Reviews of Modern Physics, 81, 865-942(2009).

    [24] Chen Q, Zhang C J, Yu S X et al. Quantum discord of two-qubit X states[J]. Physical Review A, 84, 042313(2011).

    [25] Vedral V. The role of relative entropy in quantum information theory[J]. Reviews of Modern Physics, 74, 197-234(2002).

    [26] Wang G Y, Guo Y N. Protection of quantum coherence of qubit based on quantum feedback[J]. Laser & Optoelectronics Progress, 55, 102702(2018).

    [27] Liu Y X, Zhang S L, He L, its statistical physical properties[J/OL] et al. -01-01)[2019-08-07], org/abs/1902, 00217(2019). https://arxiv.

    [28] Xu Y H, Ren X Z, Liu X Y. Entanglement evolution characteristics of quantum Rabi models with two arbitrary qubits[J]. Acta Optica Sinica, 38, 0127001(2018).

    [29] Yan L. Evolution property of entanglement between two subsystems[J]. Laser & Optoelectronics Progress, 54, 032701(2017).

    Zhiyuan Yang, Yating Shao, Quanying Wu, Xiang Hao. Long-Range Quantum Coherenceand Quantum Phase Transition in Atom-Microcavity Coupled System[J]. Laser & Optoelectronics Progress, 2020, 57(1): 012701
    Download Citation