• Laser & Optoelectronics Progress
  • Vol. 45, Issue 3, 38 (2008)
Zhao Huajun1,*, Yuan Dairong1, and Wu Zhengmao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    Zhao Huajun, Yuan Dairong, Wu Zhengmao. Research Development of Subwavelength Polarization Gratings[J]. Laser & Optoelectronics Progress, 2008, 45(3): 38 Copy Citation Text show less
    References

    [2] N. Bokor, R. Shecher, N. Davidson et al.. Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength[J]. Appl. Opt., 2001, 40(13):2076~2080

    [3] L. L. Soares, L. Cescato. Metallized photoresist grating as a polarizing beam splitter[J]. Appl. Opt., 2001, 40(32): 5906~5910

    [4] L. Pajewski, R. Borghi, G. Schettini et al.. Design of a binary grating with subwavelength features that acts as a polarizing beam splitter[J]. Appl. Opt., 2001, 40(32):5898~5905

    [6] A. G. Lopez, H. G. Graighead. Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating[J]. Opt. Lett., 1998, 23(20):1627~1629

    [8] D. C. Flanders. Submicrometer periodicity grating as artificial anisotropic dielectrics[J]. Appl. Phys. Lett., 1983, 42(6):492~494

    [9] R. C. Enger, S. K. Case. Optical elements with ultrahigh spatial-frequency surface corrugations[J]. Appl. Opt., 1983, 22(20):3220~3228

    [10] L. H. Cescato, E. Gluch, N. Streibl. Holographic quarterwave plates[J]. Appl. Opt., 1990, 29(22):3286~3290

    [11] E. Hasman, Z. Bomzon, A. Niv et al.. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures[J]. Opt. Commun., 2002, 209(1-3):45~54

    [13] Z. Bomzon, G. Biener, V. Kleiner et al.. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings[J]. Opt. Lett., 2002, 27(5):285~287

    [14] A. Niv, Biener, G. Kleiner V. Kleiner et al.. Spiral phase elements obtained by use of discrete space-variant subwavelength gratings[J]. Opt. Commun., 2005, 251(4-6):306~314

    [15] G. Biener, A. Niv, V. Kleiner et al.. Near-field Fourier transform polarimetry by use of a discrete space-variant subwavelength grating[J]. J. Opt. Soc. Am. A, 2003, 20(10):1940~1948

    [16] L. F. Li. Multilayer modal method for diffraction gratings of arbitrary profile, depth and permittivity[J]. J. Opt. Soc.Am. A, 1993, 10(12):2581~2591

    [17] G. Cincotti. Polarization gratings: design and applications[J]. IEEE J.Quantum. Electron., 2003, 39(12):1645~1652

    [18] J. A. Davis, J. Adachi, R. Carlos et al.. Polarization beam splitters using polarization diffraction gratings[J]. Opt. Lett., 2001, 26(9):587~589

    [19] L. F. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings[J]. J. Opt. Soc. Am. A, 1996, 13(5):1024~1035

    [20] Z. Bomzon, V. Kleiner, E. Hasman et al.. Computer-generated space-variant polarization elements with subwavelength metal stripes[J]. Opt. Lett., 2001, 26(1):33~35

    [21] F. Gori. Measuring Stokes parameters by means of a polarization grating[J]. Opt. Lett., 1999, 24(9):584~586

    [22] H. Lajunen, J. Tervo, J. Turunen. High-efficiency broadband diffractive elements based on polarization gratings[J]. Opt. Lett., 2004, 29(8):803~805

    [24] Z. Bomzon, G. Biener, V. Kleiner et al.. Real-time analysis of partially polarized light with a space-variant subwavelength dielectric grating[J]. Opt. Lett., 2002, 27(3):188~190

    [25] D. E. Tremain, K. K. Mei Application of the unimoment method of scattering from periodic dielectric structure[J]. J. Opt. Soc. Am. A, 1978, 68(6):775~783

    [26] D. Maystre. A new general integral theory for dielectric coated gratings[J]. J. Opt. Soc. Am., 1978, 68(4):490~495

    [27] L. C. Botten, R. C. Mcphedran. Completeness and modal expansion methods in diffraction theory[J]. J. Mod. Opt., 1985, 32(12):1479~1488

    [28] J. Tervo, J. Turunen. Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings[J]. Opt. Lett., 2000, 25(1):785~787

    [29] M. G. Moharam, T. K. Gaylord. Rigorous coupled-wave analysis of planar grating diffraction[J]. J.Opt.Soc.Am., 1981, 71(7):811~818

    [30] M. G. Moharam, D. A. Pommet, T. K. Gaylord et al.. Stable implementation of the rigorous coupled- wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. J. Opt. Soc. Am. A, 1995, 12(5):1077~1086

    [32] L. F. Li. A modal analysis of lamellar diffraction gratings in conical mountings[J]. J.Mod.Opt., 1993, 40(4):553~573

    [35] R. W. Gerchberg, W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. OPTIK, 1972, 35(2):237~246

    [39] J. H. Holland. Genetic algorithm[J]. Scientific American, 1992, 4(1):44~50

    [40] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by simulated Annealing[J]. Science, 1983, 220(4598):671~680

    [41] V. V. Nevdakh, N.S. Leshenyuk, L.N. Orlov. Experimental investigation of the polarization properties of reflective diffraction gratings for CO2 lasers[J]. J. Appl. Spectrosc., 1983, 39(5):1249~1254

    [42] P. P. Finet, M. L. Doucen. Polarization properties of birefringence gratings[J]. OPTIK, 1995, 100(4):159~166

    [43] L. Nikolova, M. Torodov, M. Ivanov et al.. Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy[J]. Appl. Opt., 1996, 35(20):3835~3840

    [44] H. Hertz. Electric waves[M]. New York: Macmillan, 1893

    [45] N. Dahan, A. Niv, G. Biener et al.. Thermal image encryption obtained with a SiO2 space-variant subwavelength grating supporting surface phonon-polaritons[J]. Opt. Lett., 2005, 30(23):3195~3197

    [46] B. Wen, R. G. Petschek, C. Rosenblatt. Nematic liquid-crystal polarization gratings by modification of surface alignment[J]. Appl. Opt., 2002, 41(7):1246~1250

    [47] Z. Bomzon, V. Kleiner, E. Hasman. Space-variant polarization state manipulation with computer-generated metal stripe gratings[J]. Opt. Commun., 2001, 192:169~181

    [50] J. Y. Wan, T. Konishi, T. Hamamoto et al.. Polarization-multiplexed diffractive optical elements fabricated by subwavelength structures[J]. Appl. Opt., 2002, 41(1):96~100

    CLP Journals

    [1] WANG Fang, SU Jing-qin, LIU Lan-qin, WANG Fang, WANG Wen-yi, MO Lei. Design of Sub-wavelength Grating with Triangle Carve for Separating Harmonic Waves[J]. Acta Photonica Sinica, 2010, 39(6): 988

    [2] Wang Fang, Su Jingqin, Wang Fang, Liu Lanqin, Wang Wenyi, Mo Lei. Optimization of Sub-Wavelength Grating for Separating Harmonic Waves in ICF Driver[J]. Acta Optica Sinica, 2010, 30(2): 508

    [3] Wang Zhongfei, Zhang Dawei, Wang Qi, Tang Qingyong, Hong Ruijin, Huang Yuanshen, Zhuang Songlin. Development Trends of Subwavelength Metal Gratings[J]. Laser & Optoelectronics Progress, 2015, 52(1): 10002

    [4] Cao Lan, Yan Xiaona, Dai Ye, Yang Xihua. Space-to-Time Conversion by Femtosecond Spectrum Holography[J]. Acta Optica Sinica, 2012, 32(6): 609001

    [5] Ye Xin Jiang, Xiaodong, Zhang Jicheng, Wang Fengrui, Luo Xuan, Fang Yu, Xiao Lei, Yi Zao. Research Development of Subwavelength Antireflection Gratings[J]. Laser & Optoelectronics Progress, 2010, 47(6): 60501