• Infrared and Laser Engineering
  • Vol. 44, Issue 9, 2684 (2015)
Li Wenchao1、*, Zhao Lingling2, Li Zhiquan2, Zhu Jun3, Tong Kai2, and Wang Zhibin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    Li Wenchao, Zhao Lingling, Li Zhiquan, Zhu Jun, Tong Kai, Wang Zhibin. Structural design and theoretical analysis of achieving the net gain of SPASER[J]. Infrared and Laser Engineering, 2015, 44(9): 2684 Copy Citation Text show less
    References

    [1] Andrianov E S, Pukhov A A, Dorofeenko A V, et al. Dipole response of spaser on an external optical wave[J]. Optics Letters, 2011, 36(21): 4302-4034.

    [2] Lin J, Mueller J P B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-340.

    [3] Fedyanin D Y. Toward an electrically pumped spaser[J]. Optics Letters, 2012, 37(3): 404-406.

    [4] Lu Y J, Kim J. Chen H Y, et al. Plasmon nanolaser using epitaxially grown silver film[J]. Science, 2012, 337(6093): 450-453.

    [5] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation quantum generation of coherent surface plasmons in nanosysterms[J]. Physical Review Letters, 2003, 90(2): 027402.

    [6] Stockman M I. The spaser as a nanoscale quantum generator and ultrafast amplifier[J]. Journal of Optics, 2010, 12(2): 024004.

    [7] Faryad M, Lakhtaki A. Granting-coupled excitation of multiple surface plasmon-polarton waves[J]. Physical Review A, 2011, 84(3): 033852.

    [8] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser[J]. Nature, 2009, 460(7259): 1110-1112.

    [9] Brongersma M L, Shalaev V M. Applied physics the case for plasmonics[J]. Science, 2010, 328(10): 440-441.

    [10] Di Martino G, Sonnefraud Y, Kena-Cohen S, et al. Quantum statistics of surface plasmon polaritons in metallic stripe waveguides[J]. Nano Letters, 2012, 12(5): 2504-2058.

    [11] Wang B, Zhang X, Garcia-Vidal F J, et al. Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays[J]. Physical Review Letters, 2012, 109(7): 073901.

    [12] Stockman M I. Spaser action, loss compensation and stability in plasmonic systems with gain[J]. Physical Review Letters, 2011, 106(15): 156802.

    [13] Ge Yuanjing, Zhang Guangqiu, Chen Qiang. Plasma Science Technology and Its Application in Industry[M]. Beijing: China Light Industry Press, 2007

    [14] Georges A T, Karatzas N E. Optimizing the excitation of surface plasmon polaritons by difference-frequency generation on a gold surface[J]. Physical Review B, 2012, 85(15): 155442.

    [15] Martín-Becerra D, Temnov V V, Thomay T, et al. Spectral dependence of the magnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metal films[J]. Physical Review B, 2012, 86(3): 035118.

    [16] Lee S Y, Lee I M, Park J, et al. Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons[J]. Physical Review Letters, 2012, 108(21): 213907.

    [17] Hong Xiaogang, Xu Wendong, Zhao Chengqiang. Optimal design of surface plasmon resonance films structure[J]. Acta Optica Sinica, 2010, 30(7): 2164-2169.

    [18] Zheludev N I, Prosvirnin S L, Papasimakis N, et al. Lasing spaser[J]. Nature Photonics, 2008, 2(6): 351-354.

    [19] Shubina T V, Gippius N A, Shalygin V A, et al. Terahertz radiation due to random grating coupled surface plasmon polaritons[J]. Physical Review B, 2011, 83(16): 165312.

    [20] Yin Y, Wu M W. Kinetic theory of surface plasmon polariton in semiconductor nanowires[J]. Physical Review B, 2013, 87(16): 165412.

    [21] Polanco J, Fitzgerald R M, Maradudin A A. Scattering of surface plasmon polaritons by one-dimensional surface defects[J]. Physical Review B, 2013, 87(15): 155417.

    [22] Lopez-Rios T. Enhanced Raman scattering mediated by long wave vector surface plasmon polaritons[J]. Physical Review B, 2012, 85(12): 125438.

    [23] Siahpoush V, Stondergaard T, Jung J. Green′s function approach to investigate the excitation of surface plasmon polaritons in a nanometer-thin metal film[J]. Physical Review B, 2012, 85(7): 075305.

    [24] Stondergaard T, Siahpoush V, Jung J. Coupling light into and out from the surface plasmon polaritons of a nanometer-thin metal film with a metal nanostrip[J]. Physical Review B, 2012, 86(8): 085455.

    [25] Warmbier R, Manyali G S, Quandt A. Surface plasmon polaritons in lossy uniaxial anisotropic materials[J]. Physical Review B, 2012, 85(8): 085442.

    [26] Koponen M A, Hohenester U, Hakala T K, et al. Absence of mutual polariton scattering for strongly coupled surface plasmon polaritons and dye molecules with a large Stokes shift[J]. Physical Review B, 2013, 88(8): 085425.

    [27] Ignatyeva D O, Kalish A N, Levkina G Y, et al. Surface plasmon polaritons at gyrotropic interfaces[J]. Physical Review A, 2012, 85(4): 043804.

    [28] Baumeier B, Huerkamp F, Leskova T A, et al. Scattering of surface-plasmon polaritons by a localized dielectric surface defect studied using an effective boundary condition[J]. Physical Review A, 2011, 84(1): 013810.

    Li Wenchao, Zhao Lingling, Li Zhiquan, Zhu Jun, Tong Kai, Wang Zhibin. Structural design and theoretical analysis of achieving the net gain of SPASER[J]. Infrared and Laser Engineering, 2015, 44(9): 2684
    Download Citation