• Photonics Research
  • Vol. 9, Issue 10, 2006 (2021)
Ying Zhang1、†, Qiang Liu1、†, Chenyang Mei, Desheng Zeng, Qingzhong Huang*, and Xinliang Zhang
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1364/PRJ.434151 Cite this Article Set citation alerts
    Ying Zhang, Qiang Liu, Chenyang Mei, Desheng Zeng, Qingzhong Huang, Xinliang Zhang. Proposal and demonstration of a controllable Q factor in directly coupled microring resonators for optical buffering applications[J]. Photonics Research, 2021, 9(10): 2006 Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] J. T. Clarke, J. C. Gerard, D. Grodent, S. Wannawichian, J. Gustin, J. Connerney, F. Crary, M. Dougherty, W. Kurth, S. W. Cowley, E. J. Bunce, T. Hill, J. Kim. A continuous-wave Raman silicon laser. Nature, 433, 725-728(2005).

    [3] L. Liu, T. Spuesens, G. Roelkens, D. V. Thourhout, P. Regreny, P. R. Romeo. A thermally tunable III–V compound semiconductor microdisk laser integrated on silicon-on-insulator circuits. IEEE Photonics Technol. Lett., 22, 1270-1272(2010).

    [4] Y. Ren, D. Perron, F. Aurangozeb, Z. Jiang, M. Hossain, V. Van. Silicon photonic vernier cascaded microring filter for broadband tunability. IEEE Photonics Technol. Lett., 31, 1503-1506(2019).

    [5] Q. Huang, J. Yu. Coherent interaction between two orthogonal travelling-wave modes in a microdonut resonator for filtering and buffering applications. Opt. Express, 22, 25171-25182(2014).

    [6] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [7] X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong. 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt. Express, 20, 2507-2515(2012).

    [8] Y. Vlasov, W. M. J. Green, F. Xia. High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photonics, 2, 242-246(2008).

    [9] Q. Huang, X. Zhang, J. Xia, J. Yu. Systematic investigation of silicon digital 1 × 2 electro-optic switch based on a microdisk resonator through carrier injection. Appl. Phys. B, 105, 353-361(2011).

    [10] F. Xia, L. Sekaric, Y. Vlasov. Ultracompact optical buffers on a silicon chip. Nat. Photonics, 1, 65-71(2006).

    [11] Q. Huang, G. Song, J. Chen, Z. Shu, J. Yu. Proposal and fabrication of an electrooptically controlled multimode microresonator for continuous fast-to-slow light tuning. IEEE Photonics J., 6, 2201011(2014).

    [12] A. W. Elshaari, A. Aboketaf, S. F. Preble. Controlled storage of light in silicon cavities. Opt. Express, 18, 3014-3022(2010).

    [13] K. Shtyrkova, P. T. Callahan, N. Li, E. S. Magden, A. Ruocco, D. Vermeulen, F. X. Kartner, M. R. Watts, E. P. Ippen. Integrated CMOS-compatible Q-switched mode-locked lasers at 1900  nm with an on-chip artificial saturable absorber. Opt. Express, 27, 3542-3556(2019).

    [14] L. Chen, N. Sherwood-Droz, M. Lipson. Compact bandwidth-tunable microring resonators. Opt. Lett., 32, 3361-3363(2007).

    [15] H. Shoman, H. Jayatilleka, A. H. K. Park, A. Mistry, N. A. F. Jaeger, S. Shekhar, L. Chrostowski. Compact wavelength- and bandwidth-tunable microring modulator. Opt. Express, 27, 26661-26675(2019).

    [16] Y. Liu, A. Wichman, B. Isaac, J. Kalkavage, J. Klamkin. Ultra-low-loss silicon nitride optical beamforming network for wideband wireless applications. IEEE J. Sel. Top. Quantum Electron., 24, 8300410(2018).

    [17] Q. Xu, P. Dong, M. Lipson. Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys., 3, 406-410(2007).

    [18] T. Tanabe, M. Notomi, H. Taniyama, E. Kuramochi. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning. Phys. Rev. Lett., 102, 043907(2009).

    [19] V. M. Menon, W. Tong, S. R. Forrest. Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier. IEEE Photonics Technol. Lett., 16, 1343-1345(2004).

    [20] M. J. Strain, C. Lacava, L. Meriggi, I. Cristiani, M. Sorel. Tunable Q-factor silicon microring resonators for ultra-low power parametric processes. Opt. Lett., 40, 1274-1277(2015).

    [21] Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, S. Noda. Dynamic control of the Q factor in a photonic crystal nanocavity. Nat. Mater., 6, 862-865(2007).

    [22] J. Upham, Y. Tanaka, T. Asano, S. Noda. Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control. Opt. Express, 16, 21721-21730(2008).

    [23] J. Upham, H. Inoue, Y. Tanakmodesa, W. Stumpf, K. Kojima, T. Asano, S. Noda. Pulse capture without carrier absorption in dynamic Q photonic crystal nanocavities. Opt. Express, 22, 15459-15466(2014).

    [24] S. Manipatruni, C. B. Poitras, Q. Xu, M. Lipson. High-speed electro-optic control of the optical quality factor of a silicon microcavity. Opt. Lett., 33, 1644-1646(2008).

    [25] Y. Zhang, Q. Huang, Q. Liu. Controllable optical quality factor in a two-ring-two-bus structure. Proc. SPIE, 11761, 1176104(2021).

    [26] S. J. Emelett, R. A. Soref. Synthesis of dual-microring-resonator crossconnect filters. Opt. Express, 13, 4439-4456(2005).

    [27] S. J. Emelett, R. A. Soref. Analysis of dual-microring-resonator cross-connect switches and modulators. Opt. Express, 13, 7840-7853(2005).

    [28] Q. Xu, J. Shakya, M. Lipson. Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency. Opt. Express, 14, 6463-6468(2006).

    [29] J. Liu, H. Tian, E. Lucas, A. S. Raja, G. Lihachev, R. N. Wang, J. He, T. Liu, M. H. Anderson, W. Weng, S. A. Bhave, T. J. Kippenberg. Monolithic piezoelectric control of soliton microcombs. Nature, 583, 385-390(2020).

    [30] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Loncar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [31] L. Chang, W. Xie, H. Shu, Q. F. Yang, B. Shen, A. Boes, J. D. Peters, W. Jin, C. Xiang, S. Liu, G. Moille, S. P. Yu, X. Wang, K. Srinivasan, S. B. Papp, K. Vahala, J. E. Bowers. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331(2020).

    [32] Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, W. Wan. Optically induced transparency in a micro-cavity. Light Sci. Appl., 5, e16072(2016).

    [33] C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334-340(2020).

    [34] S. Chen, H. Francis, C.-H. Ho, Y.-R. Wang, K.-J. Che, M. Hopkinson, C.-Y. Jin. Control of quality factor in laterally coupled vertical cavities. IET Optoelectron., 14, 100-103(2020).

    [35] J. Xie, L. Zhou, Z. Li, J. Wang, J. Chen. Seven-bit reconfigurable optical true time delay line based on silicon integration. Opt. Express, 22, 22707-22715(2014).

    [36] W. Jiang, L. Xu, Y. Liu, Y. Chen, X. Liu, Y. Yu, Y. Yu, X. Zhang. Optical all-pass filter in silicon-on-insulator. ACS Photonics, 7, 2539-2546(2020).

    [37] M. F. Yanik, W. Suh, Z. Wang, S. Fan. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett., 93, 233903(2004).

    [38] M. Li, L. Wang, X. Li, X. Xiao, S. Yu. Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications. Photon. Res., 6, 109-116(2018).

    [39] C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, G.-C. Guo. Brillouin-scattering-induced transparency and nonreciprocal light storage. Nat. Commun., 6, 6193(2015).

    [40] T. Qin, J. Yang, F. Zhang, Y. Chen, D. Shen, W. Liu, L. Chen, X. Jiang, X. Chen, W. Wan. Fast- and slow-light-enhanced light drag in a moving microcavity. Commun. Phys., 3, 118(2020).

    Ying Zhang, Qiang Liu, Chenyang Mei, Desheng Zeng, Qingzhong Huang, Xinliang Zhang. Proposal and demonstration of a controllable Q factor in directly coupled microring resonators for optical buffering applications[J]. Photonics Research, 2021, 9(10): 2006
    Download Citation