• Advanced Photonics
  • Vol. 6, Issue 2, 026001 (2024)
Weiqi Wang and Zhiwei Huang*
Author Affiliations
  • National University of Singapore, College of Design and Engineering, Optical Bioimaging Laboratory, Department of Biomedical Engineering, Singapore
  • show less
    DOI: 10.1117/1.AP.6.2.026001 Cite this Article Set citation alerts
    Weiqi Wang, Zhiwei Huang. Stimulated Raman scattering tomography for rapid three-dimensional chemical imaging of cells and tissue[J]. Advanced Photonics, 2024, 6(2): 026001 Copy Citation Text show less
    References

    [1] G. J. Brakenhoff et al. Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature, 317, 748-749(1985).

    [2] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [3] X. Chen et al. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc., 7, 654-669(2012).

    [4] P. Nandakumar, A. Kovalev, A. Volkmer. Vibrational imaging based on stimulated Raman scattering microscopy. New J. Phys., 11, 033026(2009).

    [5] C. W. Freudiger et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322, 1857-1861(2008).

    [6] C. M. Tempany et al. Multimodal imaging for improved diagnosis and treatment of cancers. Cancer, 121, 817-827(2015).

    [7] M. A. Miller, R. Weissleder. Imaging of anticancer drug action in single cells. Nat. Rev. Cancer, 17, 399-414(2017).

    [8] F. Hu, L. Shi, W. Min. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat. Methods, 16, 830-842(2019).

    [9] L. Streich et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy. Nat. Methods, 18, 1253-1258(2021).

    [10] M. Wei et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. U. S. A., 116, 6608-6617(2019).

    [11] J. X. Cheng, X. S. Xie. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science, 350, aaa8870(2015).

    [12] J. Wu, N. Ji, K. K. Tsia. Speed scaling in multiphoton fluorescence microscopy. Nat. Photonics, 15, 800-812(2021).

    [13] X. Chen et al. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography. Nat. Commun., 8, 15117(2017).

    [14] L. Gong, S. L. Lin, Z. W. Huang. Stimulated Raman scattering tomography enables label-free volumetric deep tissue imaging. Laser Photonics Rev., 15, 2100069(2021).

    [15] O. Brzobohatý, T. Čižmár, P. Zemánek. High quality quasi-Bessel beam generated by round-tip axicon. Opt. Express, 16, 12688-12700(2008).

    [16] A. Nussbaum. Teaching of advanced geometric optics. Appl. Opt., 17, 2128-2129(1978).

    [17] J. Zhu et al. Converting okara to superabsorbent hydrogels as soil supplements for enhancing the growth of choy sum (Brassica sp.) under water-limited conditions. ACS Sustain. Chem. Eng., 8, 9425-9433(2020).

    [18] K. Huang et al. Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev., 8, 152-157(2014).

    [19] M. Zarebanadkouk et al. Quantification and modeling of local root water uptake using neutron radiography and deuterated water. Vadose Zone J., 11, vzj2011.0196(2012).

    [20] J. T. Edward. Molecular volumes and the Stokes-Einstein equation. J. Chem. Educ., 47, 261(1970).

    [21] S. Mosca et al. Optical characterization of porcine tissues from various organs in the 650–1100 nm range using time-domain diffuse spectroscopy. Biomed. Opt. Express, 11, 1697-1706(2020).

    [22] F. O. Fahrbach, A. Rohrbach. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun., 3, 632(2012).

    [23] P. Lin et al. Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope. Opt. Express, 28, 30210-30221(2020).

    [24] B. H. W. Hendriks et al. Electrowetting-based variable-focus lens for miniature systems. Opt. Rev., 12, 255-259(2005).

    [25] N. T. Ersumo et al. A micromirror array with annular partitioning for high-speed random-access axial focusing. Light: Sci. Appl., 9, 183(2020).

    [26] T. Chakraborty et al. Converting lateral scanning into axial focusing to speed up three-dimensional microscopy. Light: Sci. Appl., 9, 165(2020).

    [27] Y. Takekawa, Y. Takashima, Y. Takaki. Holographic display having a wide viewing zone using a MEMS SLM without pixel pitch reduction. Opt. Express, 28, 7392-7407(2020).

    [28] J. Cheng et al. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device. Opt. Lett., 40, 4875-4878(2015).

    [29] I. S. Saidi, S. L. Jacques, F. K. Tittel. Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Appl. Opt., 34, 7410-7418(1995).

    [30] F. O. Fahrbach, P. Simon, A. Rohrbach. Microscopy with self-reconstructing beams. Nat. Photonics, 4, 780-785(2010).

    [31] J. Cao et al. Recent progress in NIR-II contrast agent for biological imaging. Front. Bioeng. Biotechnol., 7, 487(2020).

    [32] H. Wan et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun., 9, 1171(2018).

    [33] J. M. Girkin, S. Poland, A. J. Wright. Adaptive optics for deeper imaging of biological samples. Curr. Opin. Biotechnol., 20, 106-110(2009).

    [34] D. A. Fish et al. Blind deconvolution by means of the Richardson–Lucy algorithm. J. Opt. Soc. Am. A, 12, 58-65(1995).

    Weiqi Wang, Zhiwei Huang. Stimulated Raman scattering tomography for rapid three-dimensional chemical imaging of cells and tissue[J]. Advanced Photonics, 2024, 6(2): 026001
    Download Citation