• Photonics Research
  • Vol. 11, Issue 2, 279 (2023)
Shaocong Zhu1, Zhenhai Fu1、3、*, Xiaowen Gao1、4、*, Cuihong Li1, Zhiming Chen1, Yingying Wang1, Xingfan Chen2, and Huizhu Hu1、2、5、*
Author Affiliations
  • 1Quantum Sensing Center, Zhejiang Lab, Hangzhou 310000, China
  • 2State Key Laboratory of Modern Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 3e-mail: fuzhenhai@zju.edu.cn
  • 4e-mail: gaoxw@zhejianglab.com
  • 5e-mail: huhuizhu2000@zju.edu.cn
  • show less
    DOI: 10.1364/PRJ.475793 Cite this Article Set citation alerts
    Shaocong Zhu, Zhenhai Fu, Xiaowen Gao, Cuihong Li, Zhiming Chen, Yingying Wang, Xingfan Chen, Huizhu Hu. Nanoscale electric field sensing using a levitated nano-resonator with net charge[J]. Photonics Research, 2023, 11(2): 279 Copy Citation Text show less
    References

    [1] J. Jaeckel. Probing minicharged particles with tests of Coulomb’s law. Phys. Rev. Lett., 103, 080402(2009).

    [2] J. Jaeckel, S. Roy. Spectroscopy as a test of Coulomb’s law: a probe of the hidden sector. Phys. Rev. D, 82, 125020(2010).

    [3] J. Jaeckel, A. Ringwald. The low-energy frontier of particle physics. Annu Rev. Nucl Part. Sci., 60, 405-437(2010).

    [4] R. C. Hansen. Electrically Small, Superdirective, and Superconducting Antennas(2006).

    [5] J. E. Toney, A. G. Tarditi, P. Pontius, A. Pollick, S. Sriram, S. A. Kingsley. Detection of energized structures with an electro-optic electric field sensor. IEEE Sens. J., 14, 1364-1369(2014).

    [6] R. Zeng, B. Wang, B. Niu, Z. Yu. Development and application of integrated optical sensors for intense e-field measurement. Sensors, 12, 11406-11434(2012).

    [7] J. Zhang, F. Cheng, B. Sun, K. Chen. Nanosecond transient electric field measurement system using an integrated electro-optic sensor. Opt. Eng., 53, 117101(2014).

    [8] M. N. Horenstein, P. R. Stone. A micro-aperture electrostatic field mill based on MEMS technology. J. Electrost., 51, 515-521(2001).

    [9] B. Bahreyni, G. Wijeweera, C. Shafai, A. Rajapakse. Analysis and design of a micromachined electric-field sensor. J. Microelectromech. Syst., 17, 31-36(2008).

    [10] A. Kainz, F. Keplinger, W. Hortschitz, M. Kahr, H. Steiner, M. Stifter, J. R. Hunt, J. Resta-Lopez, V. Rodin, C. P. Welsch, J. Borburgh. Noninvasive 3D field mapping of complex static electric fields. Phys. Rev. Lett., 122, 244801(2019).

    [11] C. L. Holloway, J. A. Gordon, A. Schwarzkopf, D. A. Anderson, S. A. Miller, N. Thaicharoen, G. Raithel. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms. Appl. Phys. Lett., 104, 244102(2014).

    [12] T. Thiele, J. Deiglmayr, M. Stammeier, J.-A. Agner, H. Schmutz, F. Merkt, A. Wallraff. Imaging electric fields in the vicinity of cryogenic surfaces using Rydberg atoms. Phys. Rev. A, 92, 063425(2015).

    [13] B. Liu, L.-H. Zhang, Z.-K. Liu, Z.-Y. Zhang, Z.-H. Zhu, W. Gao, G.-C. Guo, D.-S. Ding, B.-S. Shi. Highly sensitive measurement of a megahertz RF electric field with a Rydberg-atom sensor. Phys. Rev. Appl., 18, 014045(2022).

    [14] D. H. Meyer, Z. A. Castillo, K. C. Cox, P. D. Kunz. Assessment of Rydberg atoms for wideband electric field sensing. J. Phys. B, 53, 034001(2020).

    [15] C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, K. J. Weatheril. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photonics, 11, 40-43(2017).

    [16] K. A. Gilmore, M. Affolter, R. J. Lewis-Swan, D. Barberena, E. Jordan, A. M. Rey, J. J. Bollinger. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals. Science, 373, 673-678(2021).

    [17] M. J. Biercuk, H. Uys, J. W. Britton, A. P. van Devender, J. J. Bollinger. Ultrasensitive detection of force and displacement using trapped ions. Nat. Nanotechnol., 5, 646-650(2010).

    [18] K. A. Gilmore, J. G. Bohnet, B. C. Sawyer, J. W. Britton, J. J. Bollinger. Amplitude sensing below the zero-point fluctuations with a two-dimensional trapped-ion mechanical oscillator. Phys. Rev. Lett., 118, 263602(2017).

    [19] M. Affolter, K. A. Gilmore, J. E. Jordan, J. J. Bollinger. Phase-coherent sensing of the center-of-mass motion of trapped-ion crystals. Phys. Rev. A, 102, 052609(2020).

    [20] G. Ranjit, M. Cunningham, K. Casey, A. A. Geraci. Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A, 93, 053801(2016).

    [21] C. Timberlake, M. Toroš, D. Hempston, G. Winstone, M. Rashid, H. Ulbricht. Static force characterization with Fano anti-resonance in levitated optomechanics. Appl. Phys. Lett., 114, 023104(2019).

    [22] C. P. Blakemore, A. D. Rider, S. Roy, Q. Wang, A. Kawasaki, G. Gratta. Three-dimensional force-field microscopy with optically levitated microspheres. Phys. Rev. A, 99, 023816(2019).

    [23] F. Monteiro, S. Ghosh, A. G. Fine, D. C. Moore. Optical levitation of 10-ng spheres with nano-g acceleration sensitivity. Phys. Rev. A, 96, 063841(2017).

    [24] F. Monteiro, W. Li, G. Afek, C. Li, M. Mossman, D. C. Moore. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A, 101, 053835(2020).

    [25] K. Shen, Y. Duan, P. Ju, Z. Xu, X. Chen, L. Zhang, J. Ahn, X. Ni, T. Li. On-chip optical levitation with a metalens in vacuum. Optica, 8, 1359-1362(2021).

    [26] Z. Fu, S. Zhu, Y. Dong, X. Chen, X. Gao, H. Hu. Force detection sensitivity spectrum calibration of levitated nanomechanical sensor using harmonic coulomb force. Opt. Laser Eng., 152, 106957(2022).

    [27] T. Liang, S. Zhu, P. He, Z. Chen, Y. Wang, C. Li, Z. Fu, X. Gao, X. Chen, N. Li, Q. Zhu. Yoctonewton force detection based on optically levitated oscillator. Fundam. Res..

    [28] F. Ricci, M. T. Cuairan, G. P. Conangla, A. W. Schell, R. Quidant. Accurate mass measurement of a levitated nanomechanical resonator for precision force-sensing. Nano Lett., 19, 6711-6715(2019).

    [29] M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, L. Novotny. Controlling the net charge on a nanoparticle optically levitated in vacuum. Phys. Rev. A, 95, 061801(2017).

    [30] J. Gieseler, L. Novotny, R. Quidant. Thermal nonlinearities in a nanomechanical oscillator. Nat. Phys., 9, 806-810(2013).

    [31] L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek, S. G. Hofer, S. Hong, N. Kiesel, A. Kugi, M. Aspelmeyer. Real-time optimal quantum control of mechanical motion at room temperature. Nature, 595, 373-377(2021).

    [32] Z. Fu, Y. Ma, C. Li, J. Jiang, N. Li, H. Hu. Capture region shrinkage and levitation instability of optical trap induced by decreased damping in vacuum. Opt. Commun., 512, 128034(2022).

    [33] F. Ricci, M. T. Cuairan, A. W. Schell, E. Hebestreit, R. A. Rica, N. Meyer, R. Quidant. A chemical nanoreactor based on a levitated nanoparticle in vacuum. ACS Nano, 16, 8677-8683(2022).

    [34] Y. Zheng, L.-M. Zhou, Y. Dong, C.-W. Qiu, X.-D. Chen, G.-C. Guo, F.-W. Sun. Robust optical-levitation-based metrology of nanoparticle’s position and mass. Phys. Rev. Lett., 124, 223603(2020).

    [35] J. Gieseler, B. Deutsch, R. Quidant, L. Novotny. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett., 109, 103603(2012).

    [36] J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, H. Ulbricht. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. J. Opt. Soc. Am. B, 34, 1421-1428(2017).

    [37] F. Zhou, Y. Bao, R. Madugani, D. A. Long, J. J. Gorman, T. W. LeBrun. Broadband thermomechanically limited sensing with an optomechanical accelerometer. Optica, 8, 350-356(2021).

    [38] E. Hebestreit, M. Frimmer, R. Reimann, C. Dellago, F. Ricci, L. Novotny. Calibration and energy measurement of optically levitated nanoparticle sensors. Rev. Sci. Instrum., 89, 033111(2018).

    [39] E. Hebestreit. Thermal properties of levitated nanoparticles, 44(2017).

    Shaocong Zhu, Zhenhai Fu, Xiaowen Gao, Cuihong Li, Zhiming Chen, Yingying Wang, Xingfan Chen, Huizhu Hu. Nanoscale electric field sensing using a levitated nano-resonator with net charge[J]. Photonics Research, 2023, 11(2): 279
    Download Citation