• Matter and Radiation at Extremes
  • Vol. 5, Issue 3, 035401 (2020)
V. D. Zvorykin1、a), I. G. Lebo2, A. V. Shutov1, and N. N. Ustinovskii1
Author Affiliations
  • 1Lebedev Physical Institute of RAS, 53 Leninskiy Pr., Moscow 119991, Russian Federation
  • 2MIREA—Russian Technological University, Institute of Cybernetics, 78 Vernadskogo Pr., Moscow 119454, Russian Federation
  • show less
    DOI: 10.1063/1.5142361 Cite this Article
    V. D. Zvorykin, I. G. Lebo, A. V. Shutov, N. N. Ustinovskii. Self-focusing of UV radiation in 1 mm scale plasma in a deep ablative crater produced by 100 ns, 1 GW KrF laser pulse in the context of ICF[J]. Matter and Radiation at Extremes, 2020, 5(3): 035401 Copy Citation Text show less
    References

    [1] P. J. Wegner, S. N. Dixit, M. W. Bowers, J. M. Auerbach, C. A. Haynam et al. National Ignition Facility laser performance status. Appl. Opt., 46, 3276(2007).

    [2] J. M. Chaput, J. Ebrardt. LMJ on its way to fusion. J. Phys.: Conf. Ser., 244, 032017(2010).

    [3] W. Y. Zhang, X. T. He. Advances in the national inertial fusion program of China. EPJ Web Conf., 59, 001009(2013).

    [4] X. Li, S. Li, T. Gong, Z. Li, D. Yang, L. Hao et al. Recent research progress of laser plasma interactions in Shenguang laser facilities. Matter Radiat. Extreems, 4, 055202(2019).

    [5] O. N. Krokhin, S. G. Garanin, S. V. Bondarenko, S. G. Garanin, S. A. Bel’kov. The concept of building a laser installation UFL-2M. Herald Russ. Acad. Sci., 81, 17(2012).

    [6] D. A. Callahan, O. A. Hurricane, D. T. Casey, P. M. Celliers, C. Cerjan et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343(2014).

    [7] V. A. Smalyuk, D. T. Casey, T. Döppner, H. F. Robey, D. S. Clark et al. Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility. Phys. Plasmas, 23, 102703(2016).

    [8] O. A. Hurricane, P. T. Springer, K. Baker, P. K. Patel, D. A. Callahan et al. Approaching a burning plasma on the NIF. Phys. Plasmas, 26, 052704(2019).

    [9] C. N. Danson, C. B. Edwards. Inertial confinement fusion and prospects for power production. High Power Laser Sci. Eng., 3, e4(2015).

    [10] J. Maniscalco. Fusion-fission hybrid concepts for laser induced fusion. Nucl. Technol., 28, 98(1976).

    [11] N. G. Basov, I. G. Lebo, N. I. Belousov, Y. K. Kalmykov, P. A. Grishunin et al. Hybrid reactor based on laser thermonuclear fusion. Sov. J. Quantum Electron., 17, 1324(1987).

    [12] V. I. Subbotin, N. G. Basov, L. P. Feoktistov. Nuclear fusion reactor with a laser neutron source. Vestnik Ross. Akad. Nauk, 63, 878(1993).

    [13] T. Ladran, J. Farmer, J. Blink, W. R. Meier, E. Storm, J. Latkowski, A. MacIntyre, R. Abbott, R. Beach, R. Miles, A. Erlandson, W. Halsey, J. Caird. Systems modeling for the laser fusion-fission energy (LIFE) power plant. Fusion Sci. Technol., 56, 647(2009).

    [14] E. A. Isaev, A. I. Lebo, I. G. Lebo. Two-sided conical laser target for a neutron source of a hybrid nuclear-thermonuclear reactor. Quantum Electron., 47, 106(2017).

    [15] I. G. Lebo, G. V. Dolgoleva. On the issue of neutron source development for a laser-driven nuclear-thermonuclear reactor. Quantum Electron., 49, 796(2019).

    [16] S. Atzeni. Laser driven inertial fusion: The physical basis of current and recently proposed ignition experiments. Plasma Phys. Controlled Fusion, 51, 124029(2009).

    [17] V. N. Goncharov, D. R. Harding, T. R. Boehly, R. S. Craxton, K. S. Anderson et al. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).

    [18] D. S. Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas, 23, 055601(2016).

    [19] V. T. Tikhonchuk. Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion. Nucl. Fusion, 59, 032001(2019).

    [20] A. J. Schmitt, J. L. Giuliani, R. H. Lehmberg. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers. J. Appl. Phys., 106, 023103(2009).

    [21] A. J. Schmitt, S. T. Zalesak, J. D. Sethian, S. P. Obenschain, A. J. Schmitt, J. W. Bates, S. P. Obenschain et al. Direct drive fusion energy shock ignition designs for sub-MJ lasers. Fusion Sci. Technol., 56, 377(2009).

    [22] S. E. Bodner, K. Gerber, D. Colombant, R. H. Lehmberg, S. P. Obenschain et al. The Nike KrF laser facility: Performance and initial target experiments. Phys. Plasmas, 3, 2098(1996).

    [23] F. Hegeler, D. Kehne, R. Lehmberg, S. Obenschain, M. Wolford et al. High-energy krypton fluoride lasers for inertial fusion. Appl. Opt., 54, F103(2015).

    [24] D. M. Kehne, M. Karasik, S. Terrell, Y. Aglitsky, Z. Smyth et al. Implementation of focal zooming on the Nike KrF laser. Rev. Sci. Instrum., 84, 013509(2013).

    [25] S. E. Bodner, A. J. Schmitt, J. D. Sethian. Laser requirements for a laser fusion energy power plant. High Power Laser Sci. Eng., 1, 2(2013).

    [26] W. L. Kruer, E. A. Williams, K. Estabrook, P. E. Young, R. P. Drake et al. Laser-intensity scaling experiments in long-scalelength, laser-produced plasmas. Phys. Fluids, 31, 1795(1988).

    [27] B. Yaakoby, C. Stoeckl, D. H. Edgell, P.-Y. Chang, A. Solodov et al. Fast-electron generation in long-scale-length plasmas. Phys. Plasmas, 19, 012704(2012).

    [28] I. G. Lebo, V. D. Zvorykin. Laser and target experiments on KrF GARPUN laser installation at FIAN. Laser Part. Beams, 17, 69(1999).

    [29] G. V. Sychugov, V. G. Bakaev, V. D. Zvorykin, I. G. Lebo. Hydrodynamics of plasma and shock waves generated by the high-power GARPUN KrF laser. Laser Part. Beams, 22, 51(2004).

    [30] N. G. Basov, E. A. Grigor’yants, V. G. Bakaev, V. D. Zvorykin, E. O. Danilov et al. Wide-aperture electron-beam-pumped excimer KrF laser with an output power of 1 GW. Sov. J. Quantum Electron., 21, 816(1991).

    [31] N. G. Basov, V. D. Zvorykin, G. E. Metreveli, A. D. Vadkovskii, A. F. Suchkov. Injection control of the parameters of radiation emitted by a high-power KrF laser pumped by an electron beam. Quantum Electron., 24, 13(1994).

    [32] A. A. Ionin, V. D. Zvorykin, N. V. Didenko, I. V. Kholin, A. V. Konyashchenko et al. GARPUN-MTW: A hybrid Ti:Sapphire/KrF laser facility for simultaneous amplification of subpicosecond/nanosecond pulses relevant to fast-ignition ICF concept. Laser Part. Beams, 25, 435(2007).

    [33] A. O. Levchenko, N. N. Ustinovskii, V. D. Zvorykin. Amplification of subpicosecond UV pulses in the multistage GARPUN-MTW Ti: Sapphire ‒ KrF laser system. Quantum Electron., 40, 381(2009).

    [34] G. A. Mesyats, A. A. Ionin, L. V. Seleznev, A. O. Levchenko, V. D. Zvorykin et al. Ti: Sapphire/KrF hybrid laser system generating trains of subterawatt subpicosecond UV pulses. Quantum Electron., 44, 431(2014).

    [35] L. V. Seleznev, A. O. Levchenko, V. D. Zvorykin, A. A. Ionin, G. A. Mesyats et al. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti: Sapphire – KrF laser. Part 1. Regenerative amplification of subpicosecond pulses in a wide-aperture electron beam pumped KrF amplifier. Quantum Electron., 43, 332(2013).

    [36] S. V. Arlantsev, E. A. Grigor’yants, V. D. Zvorykin, A. D. Vadkovskii, G. E. Metreveli. Pumping of the GARPUN wide-aperture excimer laser by counterpropagating electron beams. Quantum Electron., 24, 223(1994).

    [37] V. D. Zvorykin, S. V. Ryabchuk, A. A. Ionin, D. V. Mokrousova, S. A. Goncharov et al. Experimental capabilities of the GARPUN MTW Ti: Sapphire – KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets. Quantum Electron., 47, 319(2017).

    [38] B. Braren, L. Hadel, D. E. Seeger, R. Srinivasan, R. W. Dreyfus. Mechanism of the ultraviolet laser ablation of polymethyl methacrylate at 193 and 248 nm: Laser-induced fluorescence analysis, chemical analysis, and doping studies. J. Opt. Soc. Am. B, 3, 785(1986).

    [39] H. S. Cole, T. A. Sitnik, Y. S. Liu, H. R. Philipp. Optical absorption of some polymers in the region 240–170 nm. Appl. Phys. Lett., 48, 192(1986).

    [40] M. C. Gower, G. M. Davis. Time resolved transmission studies of poly(methyl methacrylate) films during ultraviolet laser ablative photodecomposition. J. Appl. Phys., 61, 2090(1987).

    [41] M. Yahaya, W. M. M. Yunus, H. M. Shanshool, I. Y. Abdullakh. Using z-scan technique to measure the nonlinear optical properties of PMMA/ZNO nanocomposites. J` Teknol., 78, 33(2016).

    [42] G. A. Wahab, A. K. Kodeary, H. N. Najeeb, A. A. Balakit. Study of the optical properties of poly (methyl methacrylate) (PMMA) doped with a new diarylethen compaund. Acad. Res. Int., 5, 48(2014).

    [43] H. D. Hoccheimer, K. Weishaupt, M. Pietralla, P. Mayr, H. Krbecek. Pressure dependence of the elastic constants of poly(methyl methacrylate). Polymer, 36, 3267(1995).

    [44] Y. H. Ko, J.-H. Ko, K. J. Kim. High-pressure sound velocity of PMMA studied by using Brillouin spectroscopy. J. Korean Phys. Soc., 63, 2358(2013).

    [45] P. Simon, J. Ihleman, B. Wolff. Nanosecond and femtosecond excimer laser ablation of fused silica. Appl. Phys. A, 54, 363(1991).

    [46] S. Lazare, J. Lopez, V. N. Tokarev. Modelling of high-aspect ratio microdrilling of polymers with UV laser ablation. Appl. Surf. Sci., 168, 75(2000).

    [47] V. Tokarev, S. Lazare. Recent experimental and theoretical advances in microdrilling of polymers with ultraviolet laser beams. Proc. SPIE, 5662, 221(2004).

    [48] V. B. Rozanov, V. V. Nikishin, I. G. Lebo, V. F. Tishkin. Efficiency of laser energy input into a hohlraum through a hole. Plasma Phys. Rep., 26, 405(2000).

    [49] I. G. Lebo, V. F. Tishkin. Investigation of Hydrodynamic Instabilities in the Problems of Thermonuclear Fusion(2006).

    [50] A. I. Simakov, I. G. Lebo. Modeling the evolution of whirl structures in supersonic gas stream. Electron. Network J. (Russ. Technol. J.), 6, 45(2018).

    [51] R. Härm, L. Spitzer. Transport phenomena in a completely ionized gas. Phys. Rev., 89, 977(1953).

    [52] S. I. Braginskii, M. A. Leontovich. Reviews of Plasma Physics(19631965).

    [53] S. A. Akhmanov, A. P. Sukhorukov, R. V. Khokhlov. Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp., 10, 609(1968).

    [54] I. N. Ross, C. J. Hooker, I. Coffey, J. R. M. Barr, W. T. Toner. Nonlinear properties of silica and air for picosecond ultraviolet pulses. J. Mod. Opt., 37, 555(1990).

    [55] D. Milam. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Appl. Opt., 37, 546(1998).

    [56] I. G. Lebo, A. I. Lebo. Possibility of eddy currents and spontaneous magnetic fields observations in plasma formed through the interaction of high-power laser pulses with porous targets. Math. Models Comput. Simul., 2, 359(2010).

    V. D. Zvorykin, I. G. Lebo, A. V. Shutov, N. N. Ustinovskii. Self-focusing of UV radiation in 1 mm scale plasma in a deep ablative crater produced by 100 ns, 1 GW KrF laser pulse in the context of ICF[J]. Matter and Radiation at Extremes, 2020, 5(3): 035401
    Download Citation