• Advanced Photonics Nexus
  • Vol. 3, Issue 3, 036001 (2024)
Chenliang Chang1, Xian Ding1, Di Wang2, Zhizhou Ren1, Bo Dai1, Qi Wang1, Songlin Zhuang1, and Dawei Zhang1、*
Author Affiliations
  • 1University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Laboratory of Modern Optics System, Shanghai, China
  • 2Beihang University, School of Instrumentation and Optoelectronic Engineering, Beijing, China
  • show less
    DOI: 10.1117/1.APN.3.3.036001 Cite this Article Set citation alerts
    Chenliang Chang, Xian Ding, Di Wang, Zhizhou Ren, Bo Dai, Qi Wang, Songlin Zhuang, Dawei Zhang. Split Lohmann computer holography: fast generation of 3D hologram in single-step diffraction calculation[J]. Advanced Photonics Nexus, 2024, 3(3): 036001 Copy Citation Text show less
    References

    [1] A. Maimone, A. Georgiou, J. S. Kollin. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graphics, 36, 1-16(2017).

    [2] C. Chang et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica, 7, 1563-1578(2020).

    [3] D. Pi, J. Liu, Y. Wang. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light Sci. Appl., 11, 231(2022).

    [4] M. H. Eybposh et al. DeepCGH: 3D computer-generated holography using deep learning. Opt. Express, 28, 26636-26650(2020).

    [5] R. Horisaki et al. Three-dimensional deeply generated holography. Appl. Opt., 60, A323-A328(2021).

    [6] J. Lee et al. Deep neural network for multi-depth hologram generation and its training strategy. Opt. Express, 28, 27137-27154(2020).

    [7] Y. Peng et al. Neural holography with camera-in-the-loop training. ACM Trans. Graphics, 39, 185(2020).

    [8] S. Choi et al. Neural 3D holography: learning accurate wave propagation models for 3D holographic virtual and augmented reality displays. ACM Trans. Graphics, 40, 240(2021).

    [9] X. Shui et al. Diffraction model-informed neural network for unsupervised layer-based computer-generated holography. Opt. Express, 30, 44814-44826(2022).

    [10] L. Shi et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature, 591, 234-239(2021).

    [11] K. Liu et al. 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography. Opto-Electron. Adv., 6, 220135(2023).

    [12] D. Yang et al. Diffraction-engineered holography: beyond the depth representation limit of holographic displays. Nat. Commun., 13, 6012(2022).

    [13] K. Kavakli et al. Realistic defocus blur for multiplane computer-generated holography, 418-426(2023).

    [14] M. E. Lucente. Interactive computation of holograms using a look-up table. J. Electron. Imaging, 2, 28(1993).

    [15] S.-C. Kim, E.-S. Kim. Effective generation of digital holograms of three-dimensional objects using a novel look-up table method. Appl. Opt., 47, D55-D62(2008).

    [16] J. Liu et al. Overview of fast algorithm in 3D dynamic holographic display. Proc. SPIE, 8913, 89130X(2013).

    [17] T. Shimobaba, N. Masuda, T. Ito. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane. Opt. Lett., 34, 3133-3135(2009).

    [18] T. Shimobaba et al. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display. Opt. Express, 18, 19504-19509(2010).

    [19] A. Symeonidou et al. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling. Opt. Express, 23, 22149-22161(2015).

    [20] D. Arai et al. Acceleration of computer-generated holograms using tilted wavefront recording plane method. Opt. Express, 23, 1740-1747(2015).

    [21] A. Gilles, P. Gioia. Real-time layer-based computer-generated hologram calculation for the Fourier transform optical system. Appl. Opt., 57, 8508-8517(2018).

    [22] Y. Zhao et al. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt. Express, 23, 25440-25449(2015).

    [23] J. S. Chen, D. P. Chu. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications. Opt. Express, 23, 18143-18155(2015).

    [24] H. Zhang, L. Cao, G. Jin. Computer-generated hologram with occlusion effect using layer-based processing. Appl. Opt., 56, F138-F143(2017).

    [25] G. Makey et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat. Photonics, 13, 251-256(2019).

    [26] A. Lohmann. A new class of varifocal lenses. Appl. Opt., 9, 1669-1671(1970).

    [27] J. W. Goodman. Introduction to Fourier Optics(2005).

    [28] Y. Qin et al. Split-Lohmann multifocal displays. ACM Trans. Graphics, 42, 57(2023).

    [29] L. W. Alvarez. Development of variable-focus lenses and a new refractor. J. Am. Optometr. Assoc., 49, 24-29(1978).

    [30] A. Wilson, H. Hua. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses. Opt. Express, 27, 15627-15637(2019).

    [31] S. Barbero. The Alvarez and Lohmann refractive lenses revisited. Opt. Express, 17, 9376-9390(2009).

    [32] C. Chang et al. Simple calculation of a computer-generated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane. Appl. Opt., 55, 7988-7996(2016).

    [33] J. Amako, H. Miura, T. Sonehara. Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator. Appl. Opt., 34, 3165-3171(1995).

    [34] M. Oikawa et al. Time-division color electroholography using one-chip RGB LED and synchronizing controller. Opt. Express, 19, 12008-12013(2011).

    [35] J.-H. Rick Chang, B. V. K. Vijaya Kumar, A. C. Sankaranarayanan. Towards multifocal displays with dense focal stacks. ACM Trans. Graphics, 37, 198(2018).

    Chenliang Chang, Xian Ding, Di Wang, Zhizhou Ren, Bo Dai, Qi Wang, Songlin Zhuang, Dawei Zhang. Split Lohmann computer holography: fast generation of 3D hologram in single-step diffraction calculation[J]. Advanced Photonics Nexus, 2024, 3(3): 036001
    Download Citation