• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 6, 880 (2022)
Bing LIN1、*, Xueqiang FAN1, Dekui LI1, Zhiyong PENG2, and Zhongyi GUO1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.06.005 Cite this Article
    LIN Bing, FAN Xueqiang, LI Dekui, PENG Zhiyong, GUO Zhongyi. Research progress of imaging through scattering media based on deep learning[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 880 Copy Citation Text show less
    References

    [1] Xu Q, Guo Z Y, Tao Q Q, et al. Multi-spectral characteristics of polarization retrieve in various atmospheric conditions[J]. Optics Communications, 2015, 339(15): 167-170.

    [2] Hu T W, Shen F, Wang K P, et al. Broad-band transmission characteristics of polarizations in foggy environments[J]. Atmosphere, 2019, 10(6): 342.

    [3] Han J F, Yang K C, Xia M, et al. Resolution enhancement in active underwater polarization imaging with modulation transfer function analysis[J]. Applied Optics, 2015, 54(11): 3294-3302.

    [4] Huang B J, Liu T G, Hu H F, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838.

    [5] Horstmeyer R, Ruan H W, Yang C H. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 2015, 9(9): 563-571.

    [6] Li D K, Xu C X, Zhang M, et al. Measuring glucose concentration in a solution based on the indices of polarimetric purity[J]. Biomedical Optics Express, 2021, 12(4): 2447-2459.

    [7] Shen F, Zhang M, Guo K, et al. The depolarization performances of scattering systems based on the Indices of Polarimetric Purity (IPPs)[J]. Optics Express, 2019, 27(20): 28337-28349.

    [8] Ntziachristos V. Going deeper than microscopy: The optical imaging frontier in biology[J]. Nature Methods, 2010, 7(8): 603-614.

    [9] Bertolotti J, van Putten E G, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491(7423): 232-234.

    [10] Osnabrugge G, Horstmeyer R, Papadopoulos I N, et al. Generalized optical memory effect[J]. Optica, 2017, 4(8): 886-892.

    [11] Haskel M, Stern A. Modeling optical memory effects with phase screens[J]. Optics Express, 2018, 26(22): 29231-29243.

    [12] Yoon J, Lee K, Park J, et al. Measuring optical transmission matrices by wavefront shaping[J]. Optics Express, 2015, 23(8): 10158-10167.

    [13] Drémeau A, Liutkus A, Martina D, et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques[J]. Optics Express, 2015, 23(9): 11898-11911.

    [14] Paudel H P, Stockbridge C, Mertz J, et al. Focusing polychromatic light through strongly scattering media[J]. Optics Express, 2013, 21(14): 17299-17308.

    [15] Osnabrugge G, Amitonova L V, Vellekoop I M. Blind focusing through strongly scattering media using wavefront shaping with nonlinear feedback[J]. Optics Express, 2019, 27(8): 11673-11688.

    [16] Li D K, Xu C X, Yan L S, et al. High-performance scanning-mode polarization based computational ghost imaging (SPCGI)[J]. Optics Express, 2022, 30(11): 17909-17921.

    [17] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104(25): 253603.

    [18] Chen H, Gao Y S, Liu X Z, et al. Imaging through scattering media via support vector regression[J]. Optics Communications, 2019, 433(15): 126-131.

    [19] Borhani N, Kakkava E, Moser C, et al. Learning to see through multimode fibers[J]. Optica, 2018, 5(8): 960-966.

    [20] Schulein R, Do C M, Javidi B. Distortion-tolerant 3D recognition of underwater objects using neural networks[J]. Journal of the Optical Society of America A, 2010, 27(3): 461-468.

    [21] Frauel Y, Javidi B. Neural network for three-dimensional object recognition based on digital holography[J]. Optics Letters, 2001, 26(19): 1478-1480.

    [22] Ando T, Horisaki R, Tanida J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26): 33902-33910.

    [23] Horisaki R, Takagi R, Tanida J. Learning-based imaging through scattering media[J]. Optics Express, 2016, 24(13): 13738-13743.

    [24] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]. International Conference on Medical image Computing and Computer-assisted Intervention, 2015: 234-241.

    [25] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7): 803-813.

    [26] Li Y Z, Xue Y J, Tian L. Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10): 1181-1190.

    [27] Zhu S, Guo E L, Gu J, et al. Imaging through unknown scattering media based on physics-informed learning[J]. Photonics Research, 2021, 9(5): B210-B219.

    [28] Zhu S, Guo E L, Gu J, et al. Efficient color imaging through unknown opaque scattering layers via physics-aware learning[J]. Optics Express, 2021, 29(24): 40024-40037.

    [29] Lyu M, Wang H, Li G, et al. Learning-based lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002.

    [30] Yang M, Liu Z H, Cheng Z D, et al. Deep hybrid scattering image learning[J]. Journal of Physics D: Applied Physics, 2019, 52(11): 115105.

    [31] Zheng S S, Wang H, Dong S, et al. Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network[J]. Photonics Research, 2021, 9(5): B220-B228.

    [32] Guo E L, Zhu S, Sun Y, et al. Learning-based method to reconstruct complex targets through scattering medium beyond the memory effect[J]. Optics Express, 2020, 28(2): 2433-2446.

    [33] Sun L, Shi J H, Wu X Y, et al. Photon-limited imaging through scattering medium based on deep learning[J]. Optics Express, 2019, 27(23): 33120-33134.

    [34] Zhu S, GuoE L, Cui Q Y, et al. Locating and imaging through scattering medium in a large depth[J]. Sensors, 2020, 21(1): 90.

    [35] Sun R, Sun X B, Chen F N, et al. Polarimetric imaging detection using a convolutional neural network with three-dimensional and two-dimensional convolutional layers[J]. Applied Optics, 2019, 59(1): 151-155.

    [36] Wang Y, Liu Q, Zu H Y, et al. An end-to-end CNN framework for polarimetric vision tasks based on polarization-parameter-constructing network[J]. arXiv preprint, 2020, 2004. 08740.

    [37] Hu H F, Zhang Y B, Li X B, et al. Polarimetric underwater image recovery via deep learning[J]. Optics and Lasers in Engineering, 2020, 133: 106152.

    [38] Zhang J C, Shao J B, Luo H B, et al. Learning a convolutional demosaicing network for microgrid polarimeter imagery[J]. Optics Letters, 2018, 43(18): 4534-4537.

    [39] Zhang J C, Shao J B, Chen J L, et al. PFNet: An unsupervised deep network for polarization image fusion[J]. Optics Letters, 2020, 45(6): 1507-1510.

    [40] Jiang H L, Fu Q, Duan J, et al. Research on infrared polarization imaging detection technology and application[J]. Infrared Technology, 2014, 36(5): 345-349.

    [41] Li X B, Li H Y, Lin Y, et al. Learning-based denoising for polarimetric images[J]. Optics Express, 2020, 28(11): 16309-16321.

    [42] Schechner Y Y, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization[C]. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

    [43] Zhang R, Gui X Y, Cheng H Y, et al. Underwater image recovery utilizing polarimetric imaging based on neural networks[J]. Applied Optics, 2021, 60(27): 8419-8425.

    [44] Li D K, Lin B, Wang X Y, et al. High-performance polarization remote sensing with the modified U-net based deep-learning network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-10.

    [45] Wang X Y, Hu T W, Li D K, et al. Performances of polarization-retrieve imaging in stratified dispersion media[J]. Remote Sensing, 2020, 12(18): 2895.

    [46] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

    [47] Huang S, Wang X F, He H C, et al. Hyperspectral image classification based on bidirectional recurrent neural network[C]. IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 2019.

    [48] Mei S H, Li X G, Liu X, et al. Hyperspectral image classification using attention-based bidirectional long short-term memory network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.

    [49] Kang I, Pang S, Zhang Q H, et al. Recurrent neural network reveals transparent objects through scattering media[J]. Optics Express, 2021, 29(4): 5316-5326.

    [50] Hoshi I, Shimobaba T, Kakue T, et al. Single-pixel imaging using a recurrent neural network combined with convolutional layers[J]. Optics Express, 2020, 28(23): 34069-34078.

    [51] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 2672-2680.

    [52] Mirza M, Osindero S. Conditional generative adversarial nets[J]. Computer Science, 2014: 2672-2680.

    [53] Ding X Y, Wang Y F, Fu X P. Multi-polarization fusion generative adversarial networks for clear underwater imaging[J]. Optics and Lasers in Engineering, 2022, 152: 106971.

    [54] Zhu Y M, Yeung C H, Lam E Y. Digital holography with deep learning and generative adversarial networks for automatic microplastics classification[C]. Proceedings of SPIE, 2020, 11551: 22-27.

    [55] Sun Y W, Shi J H, Sun L, et al. Image reconstruction through dynamic scattering media based on deep learning[J]. Optics Express, 2019, 27(11): 16032-16046.

    [56] Lai X T, Li Q Y, Chen Z Y, et al. Reconstructing images of two adjacent objects passing through scattering medium via deep learning[J]. Optics Express, 2021, 29(26): 43280-43291.

    [57] Si L, Huang T Y, Wang X J, et al. Deep learning Mueller matrix feature retrieval from a snapshot Stokes image[J]. Optics Express, 2022, 30(6): 8676-8689.

    [58] Zhang Y H, Andreas Noack M, Vagovic P, et al. Phase GAN: A deep-learning phase-retrieval approach for unpaired datasets[J]. Optics Express, 2021, 29(13): 19593-19604.

    [59] Zhu J Y, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. IEEE International Conference on Computer Vision, 2017: 2242-2251.

    [60] Yamazaki K, Horisaki R, Tanida J. Imaging through scattering media based on semi-supervised learning[J]. Applied Optics, 2020, 59(31): 9850-9854.

    [61] Reinhard H, Paul H. Deep decoder: Concise image representations from untrained non-convolutional networks[C]. Proceedings of Seventh International Conference on Learning Representations, 2019.

    [62] Yang Y, Sun J, Li H B, et al. ADMM-CSNet: A deep learning approach for image compressive sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521-538.

    [63] Yang S L, Qu B W, Liu G S, et al. Unsupervised learning polarimetric underwater image recovery under nonuniform optical fields[J]. Applied Optics, 2021, 60(26): 8198-8205.

    [64] Shi Y J, Guo E L, Bai L F, et al. Prior-free imaging unknown target through unknown scattering medium[J]. Optics Express, 2022, 30(10): 17635-17651.

    [65] Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior[J]. International Journal of Computer Vision, 2020, 128(7): 1867-1888.

    [66] Wang F, Bian Y M, Wang H C, et al. Phase imaging with an untrained neural network[J]. Light: Science & Applications, 2020, 9: 77.

    [67] Zhang X Y, Wang F, Situ G H. BlindNet: an untrained learning approach toward computational imaging with model uncertainty[J]. Journal of Physics D: Applied Physics, 2022, 55(3): 034001.

    [68] Zhu Y M, Zeng T J, Liu K W, et al. Full scene underwater imaging with polarization and an untrained network[J]. Optics Express, 2021, 29(25): 41865-41881.

    [69] Shi Y J, Guo E L, Bai L F, et al. Polarization-based haze removal using self-supervised network[J]. Frontiers in Physics, 2022, 9: 789232.

    [70] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.

    [71] Ashish V, Noam S, Niki P, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems (NIPS’17), 2017: 6000-6010.

    LIN Bing, FAN Xueqiang, LI Dekui, PENG Zhiyong, GUO Zhongyi. Research progress of imaging through scattering media based on deep learning[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 880
    Download Citation