• Advanced Photonics
  • Vol. 5, Issue 1, 016001 (2023)
Gyumin Jang1, Hyowon Han1, Sunihl Ma1, Junwoo Lee1, Chan Uk Lee1, Wooyong Jeong1, Jaehyun Son1, Dongki Cho2、3, Ji-Hee Kim2、3, Cheolmin Park1, and Jooho Moon1、*
Author Affiliations
  • 1Yonsei University, Department of Materials Science and Engineering, Seoul, Republic of Korea
  • 2Sungkyunkwan University, Department of Energy Science, Suwon, Republic of Korea
  • 3Institute for Basic Science, Center for Integrated Nanostructure Physics, Suwon, Republic of Korea
  • show less
    DOI: 10.1117/1.AP.5.1.016001 Cite this Article Set citation alerts
    Gyumin Jang, Hyowon Han, Sunihl Ma, Junwoo Lee, Chan Uk Lee, Wooyong Jeong, Jaehyun Son, Dongki Cho, Ji-Hee Kim, Cheolmin Park, Jooho Moon. Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes[J]. Advanced Photonics, 2023, 5(1): 016001 Copy Citation Text show less
    References

    [1] G. Hodes. Perovskite-based solar cells. Science, 342, 317-318(2013).

    [2] S. D. Stranks, H. J. Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol., 10, 391-402(2015).

    [3] X. Hu et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater., 24, 7373-7380(2014).

    [4] Y. H. Kim et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater., 27, 1248-1254(2015).

    [5] Z. K. Tan et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol., 9, 687-692(2014).

    [6] Y. Cao et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 562, 249-253(2018).

    [7] N. N. Wang et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics, 10, 699-704(2016).

    [8] Z. G. Xiao et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics, 11, 108-115(2017).

    [9] K. B. Lin et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562, 245-248(2018).

    [10] T. Chiba et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics, 12, 681-687(2018).

    [11] P. Vashishtha et al. High efficiency blue and green light-emitting diodes using Ruddlesden-Popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater., 31, 83-89(2019).

    [12] W. Deng et al. 2D Ruddlesden-Popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv. Funct. Mater., 29, 1903861(2019).

    [13] Q. Wang et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun., 10, 5633(2019).

    [14] W. Deng et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv. Funct. Mater., 26, 4797-4802(2016).

    [15] S. Draguta et al. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites. Nat. Commun., 8, 200(2017).

    [16] G. R. Li et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater., 28, 3528-3534(2016).

    [17] Y.-H. Kim et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics, 15, 148-155(2021).

    [18] D. Ma et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 599, 594-598(2021).

    [19] J. Byun et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater., 28, 7515-7520(2016).

    [20] D. N. Congreve et al. Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters. ACS Photonics, 4, 476-481(2017).

    [21] Z. W. Ren et al. High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Adv. Mater., 33, 2005570(2021).

    [22] G. R. X. Zou et al. Color-stable deep-blue perovskite light-emitting diodes based on organotrichlorosilane post-treatment. Adv. Funct. Mater., 31, 2103219(2021).

    [23] J. Xing et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat. Commun., 9, 3541(2018).

    [24] C. C. Stoumpos et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater., 28, 2852-2867(2016).

    [25] C. H. A. Li et al. The future is blue (LEDs): why chemistry is the key to perovskite displays. Chem. Mater., 31, 6003-6032(2019).

    [26] M. Lu et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv. Funct. Mater., 29, 1902008(2019).

    [27] M. J. Yuan et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol., 11, 872-877(2016).

    [28] L. N. Quan et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett., 17, 3701-3709(2017).

    [29] S. T. Zhang et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells. Adv. Mater., 29, 1606600(2017).

    [30] G. Jang et al. Elucidation of the formation mechanism of highly oriented multiphase Ruddlesden-Popper perovskite solar cells. ACS Energy Lett., 6, 249-260(2021).

    [31] Y. Shen et al. Interfacial potassium-guided grain growth for efficient deep-blue perovskite light-emitting diodes. Adv. Funct. Mater., 31, 2006736(2021).

    [32] H. H. Tsai et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 536, 312-316(2016).

    [33] W. S. Yang et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234-1237(2015).

    [34] H. H. Tsai et al. Optimizing composition and morphology for large-grain perovskite solar cells via chemical control. Chem. Mater., 27, 5570-5576(2015).

    [35] Y. Y. Zhou et al. Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells. J. Mater. Chem. A., 3, 8178-8184(2015).

    [36] T. L. Leung et al. Mixed spacer cation stabilization of blue-emitting n = 2 Ruddlesden–Popper organic–inorganic halide perovskite films. Adv. Opt. Mater., 8, 1901679(2020).

    [37] W. Peng et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater., 28, 3383-3390(2016).

    [38] D. H. Cao et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc., 137, 7843-7850(2015).

    [39] H. D. Lee et al. Efficient Ruddlesden-Popper perovskite light-emitting diodes with randomly oriented nanocrystals. Adv. Funct. Mater., 29, 1901225(2019).

    [40] J. Zhang et al. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule, 3, 3061-3071(2019).

    [41] R. Quintero-Bermudez et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat. Mater., 17, 900-907(2018).

    [42] Y. H. Chang et al. Facile synthesis of two-dimensional Ruddlesden-Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Res. Lett., 13, 1-7(2018).

    [43] G. Jang et al. Cold antisolvent bathing derived highly efficient large-area perovskite solar cells. Adv. Energy Mater., 9, 1901719(2019).

    [44] C. Goh et al. Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes. Appl. Phys. Lett., 86, 122110(2005).

    [45] M. Kiy et al. Observation of the Mott–Gurney law in tris (8-hydroxyquinoline) aluminum films. Appl. Phys. Lett., 80, 1198-1200(2002).

    [46] S. Yuan et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv. Mater., 31, 1904319(2019).

    [47] J. C. de Mello et al. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater., 9, 230-232(1997).

    [48] W. Xu et al. In situ-fabricated perovskite nanocrystals for deep-blue light-emitting diodes. J. Phys. Chem. Lett., 11, 10348-10353(2020).

    [49] S. Kang et al. Achieving green and deep-blue perovskite LEDs by dimensional control using various ammonium bromides with CsPbBr-3. Mater. Today Energy, 21, 100749(2021).

    Gyumin Jang, Hyowon Han, Sunihl Ma, Junwoo Lee, Chan Uk Lee, Wooyong Jeong, Jaehyun Son, Dongki Cho, Ji-Hee Kim, Cheolmin Park, Jooho Moon. Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes[J]. Advanced Photonics, 2023, 5(1): 016001
    Download Citation