• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 5, 752 (2022)
Yuqi YE1、2、*, Shimao WANG1, Xueyan SHAN1、2, Xiao ZHAO1、2, and Gang MENG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2022.05.008 Cite this Article
    YE Yuqi, WANG Shimao, SHAN Xueyan, ZHAO Xiao, MENG Gang. Perovskite photodetector based on CH3NH3PbI3 thin film arrays[J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 752 Copy Citation Text show less
    References

    [1] Ren Z W, Sun J K, Li H, et al. Bilayer PbS quantum dots for high-performance photodetectors[J]. Advanced Materials, 2017, 29(33): 1702055.

    [2] Lou Z, Shen G Z. Flexible photodetectors based on 1 D inorganic nanostructures[J]. Advanced Science, 2016, 3(6): 1500287.

    [3] Gong C H, Hu K, Wang X P, et al. 2 D nanomaterial arrays for electronics and optoelectronics[J]. Advanced Functional Materials, 2018, 28(16): 1706559.

    [4] Yan C Y, Wang J X, Wang X, et al. An intrinsically stretchable nanowire photodetector with a fully embedded structure[J]. Advanced Materials, 2014, 26(6): 943-950.

    [5] Yoo J, Jeong S, Kim S, et al. A stretchable nanowire UV-vis-NIR photodetector with high performance[J]. Advanced Materials, 2015, 27(10): 1712-1717.

    [6] Xue J, Song J Z, Dong Y H, et al. Nanowire-based transparent conductors for flexible electronics and optoelectronics[J]. Science Bulletin, 2017, 62(2): 143-156.

    [7] Butler K T, Frost J M, Walsh A. Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3[J]. Materials Horizons, 2015, 2(2): 228-231.

    [8] Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522.

    [9] Hao F, Stoumpos C C, Chang R P H, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. Journal of the American Chemical Society, 2014, 136(22): 8094-8099.

    [10] He J, Vasenko A S, Long R, et al. Halide composition controls electron-hole recombination in cesium-lead halide perovskite quantum dots: A time domain ab initio study[J]. Journal of Physical Chemistry Letters, 2018, 9(8): 1872-1879.

    [11] Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358(6364): 745-750.

    [12] Gloeckler M, Sites J R. Efficiency limitations for wide-band-gap chalcopyrite solar cells[J]. Thin Solid Films, 2005, 480/481: 241-245.

    [13] Gonzàlez de Rivera F, Angurell I, Rossell M D, et al. A general approach to fabricate Fe3O4 nanoparticles decorated with Pd, Au, and Rh: Magnetically recoverable and reusable catalysts for suzuki C-C cross-coupling reactions, hydrogenation, and sequential reactions[J]. Chemistry, 2013, 19(36): 11963-11974.

    [14] Even J, Pedesseau L, Katan C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites[J]. The Journal of Physical Chemistry C, 2014, 118(22): 11566-11572.

    [15] Pang S P, Hu H, Zhang J L, et al. NH2CH-NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells[J]. Chemistry of Materials, 2014, 26(3): 1485-1491.

    [16] Schmidt L C, Pertegás A, González-Carrero S, et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of the American Chemical Society, 2014, 136(3): 850-853.

    [17] Dimesso L, Dimamay M, Hamburger M, et al. Properties of CH3NH3PbX3 (X=I, Br, Cl) powders as precursors for organic/inorganic solar cells[J]. Chemistry of Materials, 2014, 26(23): 6762-6770.

    [18] Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 2015, 9(7): 444-449.

    [19] Lindblad R, Jena N K, Philippe B, et al. Electronic structure of CH3NH3PbX3 perovskites: Dependence on the halide moiety[J]. The Journal of Physical Chemistry C, 2015, 119(4): 1818-1825.

    [20] Zhang Y, Liu W Q, Tan F R, et al. The essential role of the poly (3-hexylthiophene) hole transport layer in perovskite solar cells[J]. Journal of Power Sources, 2015, 274: 1224-1230.

    [21] Christians J A, Miranda Herrera P A, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. Journal of the American Chemical Society, 2015, 137(4): 1530-1538.

    [22] Yakunin S, Dirin D N, Shynkarenko Y, et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites[J]. Nature Photonics, 2016, 10(9): 585-589.

    [23] Wei H T, Fang Y J, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10(5): 333-339.

    [24] Ikhmayies S J, Ahmad-Bitar R N. An investigation of the bandgap and Urbach tail of vacuum-evaporated SnO2 thin films[J]. Renewable Energy, 2013, 49: 143-146.

    [25] Ikhmayies S J, Juwhari H K, Ahmad-Bitar R N. Nanocrystalline CdS: In thin films prepared by the spray-pyrolysis technique[J]. Journal of Luminescence, 2013, 141: 27-32.

    [26] Gonzalez-Carrero S, Galian R E, Pérez-Prieto J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles[J]. Journal of Materials Chemistry A, 2015, 3(17): 9187-9193.

    [27] Chen M, Zou Y T, Wu L Z, et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire[J]. Advanced Functional Materials, 2017, 27(23): 1701121.

    [28] Wei H T, Huang J S. Halide lead perovskites for ionizing radiation detection[J]. Nature Communications, 2019, 10: 1066.

    [29] Miyata A, Mitioglu A, Plochocka P, et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites[J]. Nature Physics, 2015, 11(7): 582-587.

    [30] D’Innocenzo V, Grancini G, Alcocer M J P, et al. Excitons versus free charges in organo-lead tri-halide perovskites[J]. Nature Communications, 2014, 5: 3586.

    [31] Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths >175?μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970.

    [32] Han X, Du W M, Yu R M, et al. Piezo-phototronic enhanced UV sensing based on a nanowire photodetector array[J]. Advanced Materials, 2015, 27(48): 7963-7969.

    [33] Zhang X H, Yang S Z, Zhou H, et al. Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band[J]. Advanced Materials, 2017, 29(21): 1604431.

    [34] Li X Y, Chen M X, Yu R M, et al. Enhancing light emission of ZnO-nanofilm/Si-micropillar heterostructure arrays by piezo-phototronic effect[J]. Advanced Materials, 2015, 27(30): 4447-4453.

    [35] Pan C F, Dong L, Zhu G, et al. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array[J]. Nature Photonics, 2013, 7(9): 752-758.

    [36] Hu G F, Guo W X, Yu R M, et al. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect[J]. Nano Energy, 2016, 23: 27-33.

    [37] Bi D Q, Xu B, Gao P, et al. Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%[J]. Nano Energy, 2016, 23: 138-144.

    [38] Song W X, Wang H, Liu G C, et al. Improving the photovoltaic performance and flexibility of fiber-shaped dye-sensitized solar cells with atomic layer deposition[J]. Nano Energy, 2016, 19: 1-7.

    [39] Xie C, Yan F. Flexible photodetectors based on novel functional materials[J]. Small, 2017, 13(43): 1701822.

    [40] Guo W X, Zhang X J, Yu R M, et al. CoS NWs/Au hybridized networks as efficient counter electrodes for flexible sensitized solar cells[J]. Advanced Energy Materials, 2015, 5(11): 1500141.

    [41] Wang C F, Bao R R, Zhao K, et al. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect[J]. Nano Energy, 2015, 14: 364-371.

    [42] Dong Y H, Zou Y S, Song J Z, et al. Self-powered fiber-shaped wearable omnidirectional photodetectors[J]. Nano Energy, 2016, 30: 173-179.

    [43] Hua Q L, Sun J L, Liu H T, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing[J]. Nature Communications, 2018, 9: 244.

    [44] Kawai S, Ishiguro I. Recording characteristics of anodic oxide films on aluminum containing electrodeposited ferromagnetic metals and alloys[J]. Journal of the Electrochemical Society, 1976, 123(7): 1047-1051.

    [45] Arciniegas M P, Castelli A, Piazza S, et al. Laser-induced localized growth of methylammonium lead halide perovskite nano- and microcrystals on substrates[J]. Advanced Functional Materials, 2017, 27(34): 1701613.

    [46] Zhao X M, Liu T J, Shi W D, et al. Capillary-written single-crystalline all-inorganic perovskite microribbon arrays for highly-sensitive and thermal-stable photodetectors[J]. Nanoscale, 2019, 11(5): 2453-2459.

    [47] Ma C, Shi Y M, Hu W J, et al. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity[J]. Advanced Materials, 2016, 28(19): 3683-3689.

    [48] Wang G M, Li D H, Cheng H C, et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics[J]. Science Advances, 2015, 1(9): e1500613.

    [49] Lee W, Lee J, Yun H, et al. High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array[J]. Advanced Materials, 2017, 29(40): 1702902.

    [50] Wu W Q, Wang X D, Han X, et al. Flexible photodetector arrays based on patterned CH3NH3PbI3?xClx perovskite film for real-time photosensing and imaging[J]. Advanced Materials, 2019, 31(3): 1805913.

    [51] Baikie T, Fang Y N, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of Materials Chemistry A, 2013, 1(18): 5628-5641.

    [52] Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319.

    [53] Wang W Z, Xu H T, Cai J, et al. Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film[J]. Optics Express, 2016, 24(8): 8411-8419.

    [54] Gong X, Tong M H, Xia Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667.

    [55] Liu Y C, Zhang Y X, Yang Z, et al. Thinness and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices[J]. Advanced Materials, 2016, 28(41): 9204-9209.

    YE Yuqi, WANG Shimao, SHAN Xueyan, ZHAO Xiao, MENG Gang. Perovskite photodetector based on CH3NH3PbI3 thin film arrays[J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 752
    Download Citation