• Frontiers of Optoelectronics
  • Vol. 5, Issue 2, 157 (2012)
Guangcun SHAN1、2、*, Xinghai ZHAO1、3, Mingjun HU2, Chan-Hung SHEK2, and Wei HUANG4
Author Affiliations
  • 1State Key Laboratory of Functional Materials for Informatics, Chinese Academy of Sciences, Shanghai 200050, China
  • 2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
  • 3Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China
  • 4Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
  • show less
    DOI: 10.1007/s12200-012-0237-2 Cite this Article
    Guangcun SHAN, Xinghai ZHAO, Mingjun HU, Chan-Hung SHEK, Wei HUANG. Vertical-external-cavity surface-emitting lasers and quantum dot lasers[J]. Frontiers of Optoelectronics, 2012, 5(2): 157 Copy Citation Text show less
    References

    [1] Michler P, Kiraz A, Becher C, SchoenfeldWV, Petroff P M, Zhang L, Hu E, Imamoglu A. A quantum dot single-photon turnstile device. Science, 2000, 290(5500): 2282-2285

    [2] Fonoberov V A, Balandin A A. ZnO quantum dots: physical properties and optoelectronic applications. Journal of Nanoelectronics and Optoelectronics, 2006, 1(1): 19-38

    [3] Kumano H, Kimura S, Endo M, Sasakura H, Adachi S, Muto S, Suemune I. Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot. Journal of Nanoelectronics and Optoelectronics, 2006, 1(1): 39-51

    [4] Gerard J M, Gayral B. InAs quantum dots: artificial atoms for solidstate cavity-quantum electrodynamics. Physica E, Low-Dimensional Systems and Nanostructures, 2001, 9(1): 131-139

    [5] Fathpour S, Mi Z, Bhattacharya P. High-speed quantum dot lasers. Journal of Physics D, 2005, 38(13): 2103-2111

    [6] Okhotnikov O G. Seminconductor Disk Laser. Berlin: Wiley-VCH Verlag, 2010

    [7] Vallaitis T, Koos C, Bonk R, Freude W, Laemmlin M, Meuer C, Bimberg D, Leuthold J. Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Optics Express, 2008, 16(1): 170-178

    [8] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706-8715

    [9] He Y, Lu H T, Sai L M, Lai W Y, Fan Q L, Wang L H, Huang W. Synthesis of CdTe nanocrystals through program process of microwave irradiation. Journal of Physical Chemistry B, 2006, 110(27): 13352-13356

    [10] Shan G, Bao S, Shek C H, Huang W. Theoretical study of fluorescence resonant energy transfer dynamics in individual semiconductor nanocrystal-DNA-dye conjugates. Journal of Luminescence, 2012, 132(6): 1472-1476

    [11] Kuznetsov M, Hakimi F, Sprague R, Mooradian A. Design and characteristics of high-power ( >0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE Journal on Selected Topics in Quantum Electronics, 1999, 5(3): 561-573

    [12] Rantamki A, Sirbu A, Mereuta A, Kapon E, Okhotnikov O G. 3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser. Optics Express, 2010, 18(21): 21645-21650

    [13] Albrecht A R, Hains C P, Rotter T J, Stintz A, Malloy K J, Balakrishnan G, Moloney J V. High power 1.25 μm InAs quantum dot vertical external-cavity surface-emitting laser. Journal of Vacuum Science & Technology B, 2011, 9(3): 03C113

    [14] Coldren L A, Corzine S W. Diode Lasers and Photonic Integrated Circuits. New York: John Wiley & Sons, 1995

    [15] Li H, Iga K. Vertical-Cavity Surface-Emitting Laser Devices. Berlin: Springer, 2002

    [16] Diehl R. High Power Diode Lasers. Berlin: Springer, 2000

    [17] Lutgen S, Albrecht T, Brick P, Reill W, Luft J, Spth W. 8-W highefficiency continuous-wave semiconductor disk laser at 1000 nm. Applied Physics Letters, 2003, 82(21): 3620

    [18] Kapon E. Semiconductor Lasers II: Materials and Structures. New York: Academic Press, 1999

    [19] Chilla J, Shu Q Z, Zhou H, Weiss E, Reed M, Spinelli L. Recent advances in optically pumped semiconductor lasers. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6451: 645109

    [20] Keller U, Tropper A C. Passively modelocked surface-emitting semiconductor lasers. Physics Reports, 2006, 429(2): 67-120

    [21] Saarinen E J, Hrknen A, Suomalainen S, Okhotnikov O G. Power scalable semiconductor disk laser using multiple gain cavity. Optics Express, 2006, 14(26): 12868-12871

    [22] Fan L, Fallahi M, Hader J, Zakharian A R, Moloney J V, Murray J T, Bedford R, Stolz W, Koch S W. Multichip vertical-externalcavity surface-emitting lasers: a coherent power scaling scheme. Optics Letters, 2006, 31(24): 3612-3614

    [23] Fan L, Fallahi M, Zakharian A, Hader J, Moloney J V, Bedford R, Murray J T, Stolz W, Koch S W. Extended tunability in a two-chip VECSEL. IEEE Photonics Technology Letters, 2007, 19(8): 544-546

    [24] Rautiainen J, Hrknen A, Korpijrvi V M, Tuomisto P, Guina M, Okhotnikov O G. 2.7W tunable orange-red GaInNAs semiconductor disk laser. Optics Express, 2007, 15(26): 18345-18350

    [25] Hilbich S, Seelert W, Ostroumov V, Kannengiesser C, Elm R v, Mueller J, Weiss E, Zhou H, Chilla J. New wavelengths in the yellow orange range between 545 nm and 580 nm generated by an intracavity frequency-doubled optically pumped semiconductor laser. Proceedings of SPIE, 2007, 6451: 64510C

    [26] Fallahi M, Fan L, Kaneda Y, Hessenius C, Hader J, Li H, Moloney J V, Kunert B, Stolz W, Koch SW, Murray J, Bedford R. 5-W yellow laser by intracavity frequency doubling of high-power verticalexternal-cavity surface-emitting laser. IEEE Photonics Technology Letters, 2008, 20(20): 1700-1702

    [27] Giet S, Sun H D, Calvez S, DawsonMD, Suomalainen S, Harkonen A, Guina M, Okhotnikov O, Pesa M. Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating. IEEE Photonics Technology Letters, 2006, 18(16): 1786-1788

    [28] Giet S, Lee C L, Calvez S, Dawson M D, Destouches N, Pommier J C, Parriaux O. Stabilization of a semiconductor disk laser using an intra-cavity high reflectivity grating. Optics Express, 2007, 15(25): 16520-16526

    [29] Fan L, Fallahi M, Murray J T, Bedford R, Kaneda Y, Zakharian A R, Hader J, Moloney J V, Stolz W, Koch S W. Tunable high-power high-brightness linearly polarized vertical-external-cavity surfaceemitting lasers. Applied Physics Letters, 2006, 88(2): 021105

    [30] Lorenser D, Maas D, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D, Keller U. 50-GHz passively mode-locked surfaceemitting semiconductor laser with 100-mW average output power. IEEE Journal of Quantum Electronics, 2006, 42(8): 838-847

    [31] Haring R, Paschotta R, Aschwanden A, Gini E, Morier-Genoud F, Keller U. High-power passively mode-locked semiconductor lasers. IEEE Journal of Quantum Electronics, 2002, 38(9): 1268-1275

    [32] Alford W J, Raymond T D, Allerman A A. High power and good beam quality at 980 nm from a vertical external-cavity surfaceemitting laser. Journal of the Optical Society of America B: Optical Physics, 2002, 19(4): 663-666

    [33] Hastie J E, Hopkins J M, Calvez S, Jeon C W, Burns D, Abram R, Riis E, Ferguson A I, Dawson M D. 0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser. IEEE Photonics Technology Letters, 2003, 15(7): 894-896

    [34] Hastie J E, Morton L G, Calvez S, Dawson M D, Leinonen T, Pessa M, Gibson G, Padgett M J. Red microchip VECSEL array. Optics Express, 2005, 13(18): 7209-7214

    [35] Kemp A J, Maclean A J, Hastie J E, Smith S A, Hopkins JM, Calvez S, Valentine G J, Dawson M D, Burns D. Thermal lensing, thermal management and transverse mode control in microchip VECSELs. Applied Physics B: Lasers and Optics, 2006, 83(2): 189-194

    [36] Garnache A, Kachanov A A, Stoeckel F, Planel R. High-sensitivity intracavity laser absorption spectroscopy with vertical-externalcavity surface-emitting semiconductor lasers. Optics Letters, 1999, 24(12): 826-828

    [37] Zhao X H, Zhao X, Shan G C, Gao Y. Fiber-coupled laser-driven flyer plates system. Review of Scientific Instruments, 2011, 82(4): 043904

    [38] Dingle R, Henry C H. Quantum effects in heterostructure lasers. US Patent, 3 982 207, 1976

    [39] Shan G C, Bao S Y. Theoretical study of a quantum dot microcavity laser. Proceedings of the SPIE, 2007, 6279: 627925

    [40] Bimberg D, Kirstaedter N, Ledentsov N N, Alferov Zh I, Kopev P S, Ustinov V M. InGaAs-GaAs quantum-dot lasers. IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3(2): 196-205

    [41] Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics, 1986, QE-22(9): 1915-1921

    [42] Kirstaedter N, Schmidt O G, Ledentsov N N, Bimberg D, Ustinov V M, Egorov A Yu, Zhukov A E, Maximov M V, Kopev P S, Alferov Zh I. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Applied Physics Letters, 1996, 69(9): 1226

    [43] Jiang H, Singh J. Nonequilibrium distribution in quantum dots lasers and influence on laser spectral output. Journal of Applied Physics, 1999, 85(10): 7438

    [44] Leonard D, Pond K, Petroff P M. Critical layer thickness for selfassembled InAs islands on GaAs. Physical Review B: Condensed Matter and Materials Physics, 1994, 50(16): 11687-11692

    [45] Bester G, Wu X, Vanderbilt D, Zunger A. Importance of secondorder piezoelectric effects in zinc-blende semiconductors. Physical Review Letters, 2006, 96(18): 187602

    [46] Schliwa A, Winkelnkemper M, Bimberg D. Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As∕GaAs quantum dots. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(20): 205324

    [47] Schliwa A, Winkelnkemper M, Bimberg D. Few-particle energies versus geometry and composition of InxGa1 - xAs/GaAs selforganized quantum dots. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(7): 075443

    [48] Vallaitis T, Koos C, Bonk R, Freude W, Laemmlin M, Meuer C, Bimberg D, Leuthold J. Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Optics Express, 2008, 16(1): 170-178

    [49] Blokhin S A, Maleev N A, Kuzmenkov A G, Sakharov A V, Kulagina M M, Shernyakov Yu M, Novikov I I, Maximov M V, Ustinov VM, Kovsh A R, Mikhrin S S, Ledentsov N N, Lin G, Chi J Y. Vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. IEEE Journal of Quantum Electronics, 2006, 42(9): 851-858

    [50] Mutig A, Fiol G, Moser P, Arsenijevic D, Shchukin V A, Ledentsov N N, Mikhrin S S, Krestnikov I L, Livshits D L, Kovsh A R, Hopfer F, Bimberg D. 120°C 20 Gbit/s operation of 980 nm VCSEL. Electronics Letters, 2008, 44(22): 1305-1306

    [51] Sellin R L, Kaiander I, Ouyang D, Kettler T, Pohl UW, Bimberg D, Zakharov N D, Werner P. Alternative-precursor metalorganic chemical vapor deposition of self-organized InGaAs/GaAs quantum dots and quantum-dot lasers. Applied Physics Letters, 2003, 82(6): 841

    [52] Sellers I R, Liu H Y, Groom K M, Childs D T, Robbins D, Badcock T J, Hopkinson M, Mowbray D J, SkolnickMS. 1.3 μm InAs∕GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density. Electronics Letters, 2004, 40(22): 1412-1413

    [53] Xu Z, Birkedal D, Juhl M, Hvam J. Submonolayer InGaAs∕GaAs quantum-dot lasers with high modal gain and zerolinewidth enhancement factor. Applied Physics Letters, 2004, 85(15): 3259

    [54] Mikhrin S S, Zhukov A E, Kovsh A R, Maleev N A, Ustinov V M, Shernyakov Yu M, Soshnikov I P, Livshits D L, Tarasov I S, Bedarev D A, Volovik B V, Maximov V M, Tsatsulnikov A F, Ledentsov N N, Kopev P S, Bimberg D, Alferov Zh I. 0.94 μm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots. Semiconductor Science and Technology, 2000, 15(11): 1061-1064

    [55] Vahala K J. Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain. IEEE Journal of Quantum Electronics, 1988, 24(3): 523-530

    [56] Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, Maximov M V, Kopev P S, Alferov Zh I, Richter U,Werner P, Gosele U, Heydenreich J. Low threshold, large T0 injection laser emission from (InGa)As quantum dots. Electronics Letters, 1994, 30(17): 1416-1417

    [57] Marko I P, Andreev A D, Adams A R, Krebs R, Reithmeier J, Forchel A. Importance of Auger recombination in InAs 1.3 μm quantum dot lasers. Electronics Letters, 2003, 39(1): 58

    [58] Shchekin O B, Deppe D G. Low-threshold high-T0/1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region. IEEE Photonics Technology Letters, 2002, 14(9): 1231-1233

    [59] Heinrichsdorff F, Mao M H, Kirstaedter N, Krost A, Bimberg D, Kosogov A O, Werner P. Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Applied Physics Letters, 1997, 71(1): 22

    [60] Maximov M V, Kochnev I V, Shernyakov Y M, Zaitsev S V, Gordeev N Yu, Tsatsulnikov A F, Sakharov A V, Krestnikov I L, Kopev P S, Alferov Zh I, Ledentsov N N, Bimberg D, Kosogov A O, Werner P, Gsele U. InGaAs/GaAs quantum dot lasers with ultrahigh characteristic temperature (T0 = 385 K ) grown by metal organic chemical vapour deposition. Japanese Journal of Applied Physics, 1997, 36(Part 1, No. 6B): 4221-4223

    [61] Sellin R L, Heinrichsdorff F, Ribbat Ch, Grundmann M, Pohl U W, Bimberg D. Surface flattening during MOCVD of thin GaAs layers covering InGaAs quantum dots. Journal of Crystal Growth, 2000, 221(1-4): 581-585

    [62] Ribbat Ch, Sellin R L, Kaiander I, Hopfer F, Ledentsov N N, Bimberg D, Kovsh A R, Ustinov VM, Zhukov A E, Maximov MV. Complete suppression of filamentation and superior beam quality in quantum-dot lasers. Applied Physics Letters, 2003, 82(6): 952

    [63] Ouyang D, Ledentsov N N, Bognar S, Hopfer F, Sellin R L, Kaiander I, Bimberg D. Impact of the mesa etching profiles on the spectral hole burning effects in quantum dot lasers. Semiconductor Science and Technology, 2004, 19(5): L43-L47

    [64] Strittmatter A, Germann T D, Kettler Th, Posilovic K, Pohl U W, Bimberg D. Alternative precursor metal-organic chemical vapor deposition of InGaAs∕GaAs quantum dot laser diodes with ultralow threshold at 1.25 μm. Applied Physics Letters, 2006, 88(26): 262104

    [65] Guimard D, Ishida M, Hatori N, Nakata Y, Sudo H, Yamamoto T, Sugawara M, Arakawa Y. CW lasing at 1.35 μm from ten InAs-Sb: GaAs quantum-dot layers grown by metal-organic chemical vapor deposition. IEEE Photonics Technology Letters, 2008, 20(10): 827-829

    [66] Kaminow I, Li T Y,Willner A. Optical Fiber Telecommunications V A. 5th ed. Components and Subsystems, Elsevier, 2008

    [67] Konttinen J, Harkonen A, Tuomisto P, Guina M, Rautiainen J, Pessa M, Okhotnikov O. High-power (>1W) dilute nitride semiconductor disk laser emitting at 1240 nm. New Journal of Physics, 2007, 9(5): 140

    [68] Lita B, Goldman R S, Philips J D, Bhattacharya P K. Nanometerscale studies of vertical organization and evolution of stacked selfassembled InAs/GaAs quantum dots. Applied Physics Letters, 1999, 74(19): 2824

    [69] Heinrichsdorff F, Grundmann M, Stier O, Krost A, Bimberg D. Influence of In/Ga intermixing on the optical properties of InGaAs/GaAs quantum dots. Journal of Crystal Growth, 1998, 195(1-4): 540-545

    [70] Lagatsy A A, Bain F M, Brown C T A, Sibbett W, Livshits D A, Erbert G, Rafailov E U. Low-loss quantum-dot-based saturable absorber for efficient femtosecond pulse generation. Applied Physics Letters, 2007, 91: 231111

    [71] Strittmatter A, Germann T D, Pohl J, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. 1040 nm vertical external cavity surface emitting laser based on InGaAs quantum dots grown in Stranski-Krastanow regime. Electronics Letters, 2008, 44(4): 290-291

    [72] Germann T D, Strittmatter A, Pohl J, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. Temperature-stable operation of a quantum dot semiconductor disk laser. Applied Physics Letters, 2008, 93(5): 051104

    [73] Germann T D, Strittmatter A, Pohl J, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. High-power semiconductor disk laser based on InAs∕GaAs submonolayer quantum dots. Applied Physics Letters, 2008, 92(10): 101123

    [74] Lenz A, Eisele H, Timm R, Hennig Ch, Becker S K, Sellin R L, Pohl U W, Bimberg D, Dahne M. Nanovoids in InGaAs∕GaAs quantum dots observed by cross-sectional scanning tunneling microscopy. Applied Physics Letters, 2004, 85(17): 3848

    [75] Germann T D, Strittmatter A, Pohl U W, Bimberg D, Rautiainen J, Guina M, Okhotnikov O G. Quantum-dot semiconductor disk lasers. Journal of Crystal Growth, 2008, 310(23): 5182-5186

    [76] Germann T D, Strittmatter A, Kettler T, Posilovic K, Pohl U W, Bimberg D. MOCVD of InGaAs/GaAs quantum dots for lasers emitting close to 1.3 μm. Journal of Crystal Growth, 2007, 298: 591-594

    [77] Pelton M, Yamamoto Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity. Physical Review A, 1999, 59(3): 2418-2421

    [78] Strauf S, Jahnke F. Single quantum dot nanolaser. Laser Photonics Reviews, 2011, 5(5): 607-633

    [79] Strauf S, Hennessy K, RakherMT, Choi Y S, Badolato A, Andreani L C, Hu E L, Petroff P M, Bouwmeester D. Self-tuned quantum dot gain in photonic crystal lasers. Physical Review Letters, 2006, 96(12): 127404

    [80] Pelton M, Santori C, Vuckovi J, Zhang B, Solomon G S, Plant J, Yamamoto Y. Efficient source of single photons: a single quantum dot in a micropost microcavity. Physical Review Letters, 2002, 89(23): 233602

    [81] Song B S, Noda S, Asano T, Akahane Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Materials, 2004, 4(3): 207-210

    [82] Lodahl P, Floris Van Driel A, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D, Vos W L. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 2004, 430(7000): 654-657

    [83] Reithmaier J P, Sek G, Lffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature, 2004, 432(7014): 197-200

    [84] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432(7014): 200-203

    [85] Yamaguchi M, Asano T, Noda S. Photon emission by nanocavityenhanced quantum anti-Zeno effect in solid-state cavity quantumelectrodynamics. Optics Express, 2008, 16(22): 18067-18081

    [86] Yao P J, Rao M V S C, Hughes S. On-chip single photon sources using planar photonic crystals and single quantum dots. Laser & Photonics Reviews, 2010, 4(4): 499-516

    [87] Hennessy K, Badolato A,Winger M, Gerace D, Atatüre M, Gulde S, Flt S, Hu E L, Imamolu A. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445(7130): 896-899

    [88] Shan G C, Zhao X H, Huang W. Nanolaser with a single-graphenenanoribbon in a microcavity. Journal of Nanoelectronics and Optoelectronics, 2011, 6(2): 138-143

    [89] Nomura M, Kumagai N, Iwamoto S, Ota Y, Arakawa Y. Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nature Physics, 2010, 6(4): 279-283

    [90] Cirac J I, Zoller P, Kimble H J, Mabuchi H. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Physical Review Letters, 1997, 78(16): 3221-3224

    Guangcun SHAN, Xinghai ZHAO, Mingjun HU, Chan-Hung SHEK, Wei HUANG. Vertical-external-cavity surface-emitting lasers and quantum dot lasers[J]. Frontiers of Optoelectronics, 2012, 5(2): 157
    Download Citation