[1] Y Lin, J Wang, Z G Zhang et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 27, 1170(2015).
[2] Z Xiao, X Jia, D Li et al. 26 mA cm–2
[3] Z Xiao, X Jia, L Ding et al. Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull, 62, 1562(2017).
[4] J Yuan, Y Zhang, L Zhou et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 3, 1140(2019).
[5] S Li, C Z Li, M Shi et al. New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett, 5, 1554(2020).
[6] Y Cui, Y Xu, H Yao et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 33, 2102420(2021).
[7] Q Liu, Y Jiang, K Jin et al. 18% Efficiency organic solar cells. Sci Bull, 65, 272(2020).
[8] J Qin, L Zhang, C Zuo et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 42, 010501(2021).
[9] K Jin, Z Xiao, L Ding. 18.69% PCE from organic solar cells. J Semicond, 42, 060502(2021).
[10] X Meng, K Jin, Z Xiao et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 42, 100501(2021).
[11] Y J Cheng, C H Chen, Y J Ho et al. Thieno[3, 2-
[12] Y J Cheng, Y J Ho, C H Chen et al. Synthesis, photophysical and photovoltaic properties of conjugated polymers containing fused donor-acceptor dithienopyrrolobenzothiadiazole and dithienopyrroloquinoxaline arenes. Macromolecules, 45, 2690(2012).
[13] L Feng, J Yuan, Z Zhang et al. Thieno[3, 2-
[14] J Yuan, T Huang, P Cheng et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat Commun, 10, 570(2019).
[15] J Yuan, Y Zhang, L Zhou et al. Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv Mater, 31, 1807577(2019).
[16] Q Wei, W Liu, M Leclerc et al. A-DA′D-A non-fullerene acceptors for high-performance organic solar cells. Sci China Chem, 63, 1352(2020).
[17] L Xie, Y Zhang, W Zhuang et al. Low-bandgap nonfullerene acceptor based on thieno[3, 2-
[18] C Duan, L Ding. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 65, 1231(2020).
[19] J Yuan, C Zhang, H Chen et al. Understanding energetic disorder in electron-deficient-core-based non-fullerene solar cells. Sci China Chem, 63, 1159(2020).
[20] S Liu, J Yuan, W Deng et al. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat Photonics, 14, 300(2020).
[21] J Qin, Z Chen, P Bi et al. 17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy Environ Sci, 14, 5903(2021).
[22] K Jin, Z Xiao, L Ding. D18, an eximious solar polymer. J Semicond, 42, 010502(2021).
[23] X Ji, Z Xiao, H Sun et al. Polymer acceptors for all-polymer solar cells. J Semicond, 42, 080202(2021).
[24] R Sun, W Wang, H Yu et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 5, 1548(2021).
[25] Q Fan, Z Xiao, E Wang et al. Polymer acceptors based on Y6 derivatives for all-polymer solar cells. Sci Bull, 66, 1950(2021).
[26] J Yuan, H Zhang, R Zhang et al. Reducing voltage losses in the A-DA′D-A acceptor-based organic solar cells. Chem, 6, 2147(2020).